
Paper 16.41 . .  NASA Technical 

Flight-Test  'Evaluation -of STOL 
; ' , Control:  .and Flight .-Director  -Concepts 

,'Curved , .  Decelerating  Approac.hes , -  ,:, 
, .  . . . in,' a' Powered-Lift  -Aircraft .Flying 

, ,  . 

I .  

I .  

. .  
. - ' W. S. Hhdson, G. 'H. Hardy, .:. . _I  . 

MARCH 198 1 . ,  

. -  

. ,  



TECH LIBRARY KAFB, NRA 

0334635 

NASA Technical Paper 1641 

Flight-Test Evaluation of STOL 
Control  and Flight Director  Concepts 
in a Powered-Lift Aircraft Flying 
Curved Decelerating  Approaches 

W. S. Hindson 
National  Research  Council  of C a t l a d a  
O t t a w a ,   O n t a r i o  

G. H. Hardy and R. C .  Innis 
Ames  Research  Ceuter 
Mofet t   Field,   Cal i forrl ia  

National  Aeronautics 
and  Space  Administration 

Scientific  and  Technical 
Information  Branch 

1981 





TABLE OF CONTENTS 

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

I . SYSTEM DESIGN  CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Approach  Task  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Navigation  Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
WindEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
Aircraft  Operating  Characteristics  and  Stability  Augmentation  Systems . . . . . . . . . . . . . . . . . . . . .  5 

I1 . TEST  AIRCRAFT AND CONTROL SYSTEM IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . .  7 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Performance  Envelope:  Descent  Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
Speed  Control SAS  Systems  and  Response  Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 3  

Basic  Angular Stability  Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

I11 . RESEARCH  AVIONICS SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
Horizontal  Navigation Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
Vertical Navigation Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

23 Cockpit Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IV . FLIGHT  DIRECTOR  DESIGN  FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Pilot Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Speed  and  Deceleration  Control  Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Control Blending Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 
Guidance  and  Control  Feedback  Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 
TrimManagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

V . FLIGHT  TEST  RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
Test  Conditions and  Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
Data  Measurement  Philosophy and  Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
Level-Downwind  Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 
Descending Turn  Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

Decision  Height. Breakout.  and  Landing  Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
Final  Approach  Segment to  Decision  Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

VI . PILOT COMMENTS. HANDLING  QUALITIES AND PROCEDURES. 
AND DISPLAY CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
Level-Downwind  Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 
Descent-Capture  Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 
Descending-Turn  Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
Final  Approach to Breakout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 
Decision  Height. Breakout.  and  Landing  Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
Pilot  Opinion  Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

VI1 . CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
Recommendations for Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 0  
Application to Other  Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 



APPENDIX . DESIGN  AND  EVALUATION OF ALTERNATIVE 
FLIGHT-DIRECTOR  CONTROL LAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

Introduction  and Review of Deficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 3  
Description of Alternative  Control  Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 
Analysis of Throttle  Flight  Director  Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 
Application to  Pitch  Flight  Director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
Pilot  Evaluation of Improved  Control Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

iv 



NOMENCLATURE 

C1 

CZ 

c3 

c4 

DME 

d 

dlc 

EADI 

Fs 

g 

HSI 

h 

ICAO 

I L S  

MFD 

MLS 

MODILS 

NH 

R 

R-NAV 

RTOL 

r 

normalized  speed-control gain to pitch 
director 

normalized  path-control gain to pitch 
director 

normalized  speed-control gain to throttle 
director 

normalized  path-control gain to  throttle 
director 

distance  measuring  equipment 

vertical  position  error relative to glide 
slope,  m 

direct  lift  control 

electronic  attitude  director  indicator 

pilot’s  pitch  control  force, N 

acceleration  due to  gravity,  m/sec2 

horizontal  situation  indicator 

vertical  position error relative to  desired 
path 

International Civil Aviation  Organization 

instrument  landing  system 

multifunction display 

microwave  landing  system 

modular  instrument  landing  system 

engine  rpm, % 

slant range to  touchdown, m 

area  navigation 

reduced  takeoff and landing 

turn radius,  m 

stability  augmentation  system 

Laplace operator, sec” 

tactical air navigation  system,  providing 
bearing  and  distance  information 

calibrated  airspeed,  knots 

measured  groundspeed,  knots 

very  high-frequency  omnirange,  ground 
navigation  facility  providing  bearing 
information 

co-located  VOR  and TACAN ground 
stations 

reference  airspeed,  knots 

Cartesian coordinates of aircraft  in 
runway  axes 

longitudinal  acceleration  stability  deriva- 
tive due to  throttle  deflection, 
m/sec2/deg 

vertical  acceleration  stability  derivative 
due to  vertical  velocity, sec” 

vertical  acceleration  stability  derivative 
due to throttle  deflection,  m/secZ/deg 

angle of  attack,  deg 

inertial  flightpath angle,  deg 

aerodynamic  flightpath angle,  deg 

reference  flightpath angle,  deg 

flightpath angle to electronic glide- 
slope  intercept  point,  deg 

throttle  deflection, deg, or  equivalent 
engine  rpm 

V 



~TFD throttle  fight  director  deflection, rela- 6 pitch  attitude, deg 
tive t o  pitch  attitude scale on EADI 
display  face,  deg 9 roll  angle, deg 

6, nozzle angle relative to  aircraft  datum, $ heading angle,  deg 
deg 



FLIGHT-TEST EVALUATION OF STOL CONTROL AND FLIGHT  DIRECTOR 

CONCEPTS  IN A POWERED-LIFT AIRCRAFT FLYING CURVED 

DECELERATING  APPROACHES 

W. S. Hindson,* G .  H. Hardy,  and R. C. Innis 

Ames  Research  Center 

A flight test program was carried out  to assess the feasibility of  piloted  instrument approaches along pre- 
defined, steep, curved, and decelerating approach profiles  in  powered-lift STOL aircraft. To reduce the  pilot 
workload associated with  the basic control  requirements of a powered-lift aircraft equipped with  redundant 
longitudinal controls and operating on the backside of the drag curve, separate stability augmentation  systems for 
attitude and  speed  were provided, as well as a supporting flight director and special electronic cockpit displays. 
Several STOL control concepts representative of  a variety of aircraft were evaluated. m e  tests were  carried out in 
an  environment  that employed conventional ground-based navigation facilities and included the development 
of  cockpit and operational procedures considered appropriate to powered-lift aircraft. 

The design of  the various system elements is provided, and flight-test data are presented describing the 
performance that was achieved while flying 180" turning,  steep descending approach profiles. Measures of control 
utilization from  the aircraft design and pilot workload points o f  view are presented. Pilot comments regarding the 
many issues involved in this moderately complex terminal area approach task are included. 

The results suggest that curved decelerating instrument approach profiles having moderately low rollout 
altitudes to  the  final straight approach segment may indeed be feasible from a pilot acceptance point  of view, 
given an adequate navigation environment. Systems similar to those  employed here together provide the potential 
of carrying out manual flying operations to weather minima corresponding to present day CTOL Category I/  
criteria, while also providing a means of realizing more efficient approaches during visual flight conditions. 

Although  a few STOL  transportation  systems 
have  emerged in recent  years  in  response to particular 
circumstances  of  economics or geography,  widespread 
development  of  STOL  systems to  complement  exist- 
ing transportation  networks in medium-  and high- 
density  areas  has not  occurred.  The reasons for  this 
are  vaned  and  complex. In  general,  however, it is 
recognized that  a highly integrated  infrastructure 
must  exist  before  STOL  systems will be  able to 
achieve economic  justification.  This  condition 
suggests that  the required  developments are  perhaps 
more  in  the area of  effective  systems  integration 
than  in bridging  technological gaps. The  potential 
development  and  application of powered-lift  STOL 
aircraft  in  particular are  especially  sensitive to  eco- 
nomic  and  environmental  efficiencies,  thus  placing 
additional emphasis on this  need  for  an  effective, 

*Associate  Research  Officer and  Research  Pilot, 
National  Research  Council of Canada,  Ottawa, 
Ontario. 

integrated  systems  approach to developing  STOL 
transportation  networks. 

In consequence,  the  work  reported  here addressed 
the  integration of the  navigation,  guidance,  and 
manual  control  constituents of the  terminal-area 
approach  and  landing  tasks,  with  the  objective of 
better assessing the  potential  for  optimizing  this 
aspect  of  the  STOL  transportation  problem. 

In addition to  fuel conservation  considerations, 
which  are bound  to affect all terminal-area  operations 
in the  coming  years,  the  requirement  for specialized 
STOL arrival procedures arises in  either the 
downtown-to-downtown  STOLport  operation, or 
the  spoke-to-hub  operation, where  desirable arrival 
routes  almost  certainly will be  constrained  by 
obstruction  clearance  requirements,  authorized 
environmental  corridors, or traffic  integration  prob- 
lems  with  CTOL  aircraft. In the  latter  case,  the 
capability of STOL  systems to  provide  additional 
transportation  capacity,  competitive  in  block travel 
times  and  without  an  attendant  increase in conges- 
tion,  may rest upon having  direct and specialized 



access to  designated  STOL  runways at  the  major  hub 
airport  or t o  a  downtown  STOLport,  which  may  be 
located  in potent idy conflicting  proximity to CTOL 
arrival routes to  other  outlying  airports. Moreover, 
these  operations, especially at  hub  airports where 
the  major  function  may  be  in  connecting  to  main-line 
CTOL  carriers,  must  be  carried  out  with  the same 
degree of reliability in  respect to  weather  conditions 
as that achieved by CTOL  aircraft.  These  require- 
ments  for  improved  operational  efficiency arise at  a 
time  when  deployment  of  the  forthcoming ICAO 
microwave  landing  system (MLS) and advances in 
in-flight computing  capability  and  'cockpit  display 
hardware  present  the  distinct possibility of realizing 
an  acceptable  system  at  acceptable  cost. 

To develop  a body of data  that  can be  used to  
define  criteria  for  this  aspect of  STOL  operations, 
Ames  Research  Center  has  been  conducting  a  number 
of  STOL  operating  systems  investigations involving 
both simulation  and flight studies.  Some  of  these 
investigations  have  been  directed  toward  relatively 
conventional  low-wing-loading STOL  aircraft, using 
a  DeHavilland DHC-6 Twin Otter  aircraft on  loan 
from  the Canadian  Government as the  test  aircraft. 
The  powered-lift  investigations  have  employed 
the  Augmentor Wing Jet STOL  Research  Aircraft 
(AWJSRA)  equipped with  an easily  programmable 
advanced digital avionics  system  as the test  vehicle. 
The  Augmentor Wing research  program is also  a 
cooperative  venture  with  the  Canadian  Government. 
A  research-pilot-engineer  from  the  National  Aero- 
nautical  Establishment,  a  division  of  the  National 
Research  Council  of  Canada,  was  assigned to these 
programs in 1976  with  the  responsibility  for imple- 
menting  and  carrying  out, to meet  mutual objectives, 
the  work  reported  here. 

This work  considers  the  manual  control  aspects 
of  flying  constrained  terminal-area  flightpaths in a 
powered-lift  STOL  aircraft,  with  the  aid  of  a flight 
director, to weather  limits  corresponding to  CTOL 
Category I1 operations  (nominally 30.5-m (100-ft) 
decision  height,  and  366-m (1200-ft)  runway visual 
range).  This class of aircraft is characterized  by  a 
thrust  vector  orientation  in the  approach  configura- 
tion  that is nearly orthogonal to  the  flightpath.  The 
details  associated  with  managing the relative propor- 
tions  of  what can be  considered  for  simplicity  the 
more  conventionally  wing-generated  aerodynamic  lift, 
and  the  powered  lift provided  by the  propulsion 
system, result in  added  complexity to  the usual 
pilot's  control  tasks  of  controlling  glidepath  and 
preserving  safety  margins. This investigation  con- 

sidered  these  control-related issues, which  had not 
previously been addressed  in flight and  in  the  con- 
text  of  a  demanding  instrument  approach  task. 
Moreover, the  investigation was conducted  in  a 
navigation  environment  that  employed  conventional 
ground-based facilities, and evaluated  a more  con- 
strained  approach  path  than previously had  been 
considered  for  either  automatic  or  manual flight. 
Consequently,  this  work  extends  considerably  the 
flight tests  reported  in  reference 1, in  which  a 
constant-speed  approach was flown in a  more  con- 
ventional  low-wing-loading  STOL  aircraft  along 
curved  profdes, but  in  a  simulated navigation  environ- 
ment  with  near  perfect  and  continuous navigation 
data. 

The  peculiarities  associated  with flight control 
of  powered-lift  aircraft  have  prompted  a  consider- 
able  research  effort  into  the  problems  of  operating 
this class of  aircraft.  References 2 and 3 consider 
in  detail  the  longitudinal  flight  dynamics  of  powered- 
lift  aircraft  and  their  effect on handling  qualities. 
Reference 4 describes  some  of the  fundamental 
features of  powered-lift  aircraft  and  proposes civil 
certification  criteria possibly appropriate  to  their 
general  design  features and  operational  character- 
istics. References 5 and 6 address automatic  flight 
control  considerations  for  powered-lift  aircraft, 
specifically the  automatic  configuration  management 
aspects.  This  report  provides  data on the  operation 
of  these  aircraft  in  the  context of a  moderately 
complex  piloted  instrument  approach  task. 

To  better  relate  the  results of this investigation to 
the  variety  of  powered-lift  STOL  aircraft  (refs.  7-10) 
that have resulted  from  recent  aerodynamic  studies, 
three  representative  STOL  control  concepts  and  their 
associated flight directors were evaluated.  This was 
made possible  by the high  degree  of  flexibility in 
the variable  stability  flight-control  system of the 
research  aircraft  used  in  these  tests. 

The  report  first discusses  some of  the  important 
operational  factors associated  with the  steep  and 
turning  STOL  approaches  that originate  from the 
peculiarities  of  powered-lift  STOL  aircraft  and  from 
the  nature  of  the  approach  task. Many  of  these 
considerations are  also pertinent  to  V/STOL air- 
craft  and,  to  a lesser extent, low-wing-loading STOL 
and  RTOL  aircraft.  Subsequent  sections provide a 
comprehensive  description  of  the  systems  employed 
in  the flight experiment, and  furnish  flight-test 
data  that range  from net  outer-loop  performance 
measures,  which  are  applicable to  defining  authorized 
flightways, to  control  utilization  data,  that  are 
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applicable to  aircraft  design  criteria.  The  data  presen- 
tation  concludes  with  a discussion of  pilot  acceptance 
factors  pertinent to this  kind  of  STOL  operation. 

I. SYSTEM DESIGN CONSIDERATIONS 

Many  factors  require  special  consideration  in the 
design of  a  system to  meet  the objectives  of  this 
investigation.  Some  are  kinematic  factors that relate 
to  the  low  approach  airspeeds  that will be  flown, 
and the effect  of  relatively  larger atmospheric  wind 
and  turbulence fields. There  are  special  factors that 
relate to the  control  of  a  powered-lift  aircraft  through 
nearly its  entire  unaccelerated  flight  envelope  from 
conventional  cruise to  STOL  landing  configurations. 
And  special  consideration  must  be given to  the 
realities of  the navigation  environment  in  which 
the  approach is conducted.  This  section first 
describes the general approach  profie  that was 
chosen  as  the  basis  for  this  investigation,  and sub- 

sequently  discusses  in  a  general  way the associated 
system  design  requirements. 

Approach  Task Definition 

To ensure that  attention  would  be given to  a 
variety of  potential  problem areas, the  approach 
profiles  chosen as the basis for t h i s  flight study  had 
the general  features  shown in figure 1. The 180" 
descending  turn  ensured  that  methods  would be 
developed to  deal with (1) the  discontinuity  in  the 
terminal-area  navigation  environment at  the  transition 
from  lower  accuracy  en  route navaids  (VOR/DME or 
TACAN) to  precision approach navaids (MLS), and 
(2)  the  effects  on  lateral  and  longitudinal  control 
requirements of changes  in the relative direction of 
significant  winds. The  scenario  involves  entering  the 
approach  profile  (implemented  by area  navigation 
(R-NAV)  techniques)  in the conventional flight 
configuration  at  a  representative  terminal-area 
maneuvering  speed - 140 knots  in  the  test  aircraft. 
It is desired to  maintain  this  entry airspeed  for as 
long  as feasible, within  the  constraints of  reasonable 
pilot  workload,  prior  to  transitioning  to  the  much less 

90 knots WAY POINT 3 
SELECT 
APPROACH 
FLAP 

CTOL CONFIGURATION 
A 140 knots 

WAY POINT  2 A A 
BEGIN LEVEL WAY POINT 1 
DECELERATION 

650 m 
(2100 ft) 

STOL  RUNWAY 

TURN  ROLL-OUT 

Figure 1 .- STOL  approach  profie. 
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economical  STOL  approach  and  landing  configura-  TABLE  1 .- MICROWAVE LANDING  SYSTEM 
tion  where  airspeeds  might  be  as  low  as 65  knots. CHARACTERISTICS 
Since  this  type  of  approach  profde  could  not be 
flown realistically without  the  aid  of  a flight director, 
the final straight  segment  prior to  breakout also 
provided the  opportunity  to evaluate the  potential 
applicability to powered-lift  STOL  operations 
of  various  existing  criteria  for  comparable  CTOL 
Category I1 operations.  Landing  transitions to a 
STOL  runway  were  carried out  from  a  simulated 
decision  height of 30.5 m (100 ft) as  a final measure 
of the  system  performance. 

Navigation Environment 

A  unique  feature of the  approach  task relative to 
a  conventional  ILS  task,  for  example, is not  just  the 
curvilinear nature  of  the  task  but also the relatively 
late  transition  into coverage of  the  precision  landing 
guidance  system,  This will generally  cause  a  maneuver 
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and  altitude sensors that are  used  before and  after 
entering  the  zone of  precision  coverage.  The  ability 
of the  system to first  minimize  and  then  satisfactorily 
correct  these delivery errors will strongly  influence 
the range of  potentially  acceptable  approach  profiles. 
Important  factors  in  this regard  are (1) the design  of 
the navigation  fdters that  typically  complement  the 
raw  ground-based  navigation  signals  with  on-board 
data from  barometric  and  strapped-down  inertial 
sensors,  hence  providing  wideband  three-dimensional 
estimates  of  aircraft  position; (2) the  location relative 
to  the  STOLport,  and  the signal  transmission  and 
reception  characteristics of  the VOR or TACAN 
facility  used  for  terminal-area  navigation,  and 
(3) perhaps  the  most  important  factor is the available 
coverage  volume  of the  precision  landing guidance 
system  located  at  the  STOLport.  This  report  does 
not address the various  regulatory  considerations 
that would  be  involved in authorizing  instrument 
approach  profdes  in  a  discontinuous navigation 
environment. 

An interim  microwave landing  system, MODILS, 
was used for these  tests.  The facility provided  a 
lateral  coverage of only +20", about  half  that  pro- 
posed  for the ICAO standard MLS. Relative  charac- 
teristics of  these  two  systems are  summarized in 
table 1. Details  of the  on-board navigation  system 
used  are  provided in  a  subsequent  section. 
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transient  that arises from  lateral  and vertical  differ- qnter im design system used for these tests 
ences  in the  position  measurements  from  the navaids bgasic aperture MLS proposed for iCAO use. 

Wind Effects 

Winds,  which may  be  a  significant  percentage of 
approach airspeeds,  can  have  a profound  effect on 
STOL  operations,  particularly  during  descending 
turns.  Some  of  the  factors  requiring  consideration 
when  following  inertially  referenced  approach  pro- 
files in  moderate  or severe  winds  are (1) the  changing 
bank angle requirements  during  sustained  turns, 
(2) the  ability  to  maintain  satisfactory  trim  descent 
conditions over  a much wider  range of  aerodynamic 
flightpath angles than is normally  the case  for 
CTOL aircraft,  and (3) the  choice of  an approach 
configuration  and airspeed appropriate to  the  head- 
wind conditions  at  touchdown. 

Sustained  turn  considerations-  To  help  keep  the 
nominal roll angle  within  assumed  limits  of  pilot 
and  passenger comfort (-+25") over the range of 
airspeeds  and  groundspeeds  expected, it was  decided 
to  provide  the  pilot  with a choice  of  turn  radius  for 
the  approach.  A  turn  radius  of  760  m (2500 ft) 
was typically  used  in  light  winds;  a  radius of  914 m 
(3000  ft)  could  be used  for  approaches  in  stronger 
winds or  at higher  airspeeds.  Data  are  presented in 
a  subsequent  section  describing  actual  bank angle 
utilization  during  the  descending  turn. 



Descent nim considerations- The  aerodynamic 
characteristics  of  powered-lift  aircraft  typically 
require the use of an  auxiliary  longitudinal  control 
to adjust  trim  configuration  drag  during  steep 
approaches  in  varying  wind  conditions.  Excessive 
trim  drag  for  the  trim  aerodynamic  descent angle 
will result  in too high a  power  setting to  follow the 
inertial  glidepath,  and vice versa.  These effects, 
although generally true,  are of  significantly  greater 
consequence  for  low-speed  aircraft  operating  in 
stronger  winds on a  fmed  inertially  referenced 
glide-slope  angle  because  of the relatively  large 
variations  in approach  groundspeed  and  hence  aero- 
dynamic  flightpath  angle that can  occur  for  any 
fmed  approach airspeed. For  powered-lift  STOL 
aircraft  that are  designed to  use  relatively  high 
approach power  settings,  excess  trim  drag  can  result 
in  uneconomically  higher-than-nominal  approach 
power  settings. In addition,  there  may be  insufficient 
reserve thrust,  particularly  following an engine 
failure, to  accomplish  satisfactory  glidepath  correc- 
tions  from  below.  The  situation  of  insufficient  trim 
configuration  drag,  as  might  be  encountered  during 
an approach  in  unexpectedly  calm or tailwind  condi- 
tions,  for  example, is also to  be avoided  in  powered- 
lift  aircraft  because  the  associated  low  power  setting 
will result in  a  higher than desired  angle  of attack, 
unless  speed is also increased. To deal  with  this 
problem in powered-lift  aircraft,  the  pilot is generally 
required to  make  an  advance  evaluation of the 
expected wind conditions  during  the  approach,  then 
set an auxiliary control  accordingly,  perhaps making 
one or two  subsequent  iterative  adjustments  during 
the  course of the  approach.  Ideally,  the  auxiliary 
control will affect  only  drag  and  have  an  insignificant 
effect on lift;  the  control  could  be,  for  example, 
final flap angle,  drag brake  setting, or vectored  thrust 
nozzle  angle, depending on the specific  design. 

The  additional  control  management task  imposed 
on the  pilot, in the  absence of sophisticated  stability- 
and  control-augmentation  systems, may be  a  source 
of significant additional  workload, in terms of 
planning  and  manipulation,  even  for  straight-in 
approaches.  The  potential  for  difficulty is apparent 
during  steep  turning  approaches  in  strong winds, 
where  the  aircraft is effectively  subjected to large 
wind  shear  forces.  This  problem  received  considerable 
attention  in  the design of  the  approach  flight  director 
concept used  in  this work;  a  means  of resolving the 
problem is described in  a  subsequent  section.  Imple- 
mentation  of  this  trim  management  system,  which 
directed  the  pilot  with  the  required  position of  the 

control used for  trim, based on a  system  estimate  of 
current  along-track  wind,  was  instrumental  in  obtain- 
ing  favorable  pilot  acceptance  of the curved, 
decelerating  steep  approach. 

Landing  configuration  options- The  requirement 
for  STOL  in general is ultimately  governed by  the 
shortest  runway  lengths  from  which  operations 
at  a given load  are  required.  The  requirement  for 
powered-lift  STOL  results  from  a  desire to also 
achieve economical high-speed  cruise  performance. 
Although  the design costs associated with achieving 
the  short-field  capability are  fmed  for  any  specific 
STOL  aircraft,  the  operational  costs  need  not  always 
be  incurred  for  circumstances  in  which  the  maximum 
STOL  capability is not required. Where longer run- 
way  lengths  are  available,  or  where  significant  head- 
winds  could  reasonably  be  “guaranteed” to prevail 
at landing,  a  higher  approach  airspeed  and  corre- 
spondingly less powered  lift  would  be  more  efficient. 
Under  those  circumstances,  a  steep  approach  angle 
could still be flown, provided that aircraft  charac- 
teristics  permitted  and  that  associated  sink  rates  were 
not excessive. When time is also taken  into  account, 
this  procedure  would also  reduce  airspace  utilization 
during  approach.  It is probable  that  powered-lift 
operations  would  require  the  pilot  to  take these 
factors into  account  and  to  determine an approach 
airspeed that would  not  only  be  appropriate to 
current  aircraft  weight,  but  one  that  would be 
primarily  governed  by  the  chosen  approach  and 
landing  configurations.  The  landing  configuration 
would  be  determined  by  the  runway  and wind 
conditions.  The  cockpit  procedure and the  approach 
flight director system that were  developed for  this 
investigation  provided flexibility in choice of separate 
approach  and  landing  configurations,  and of their 
associated  reference  airspeeds. A modest  deceleration 
capability  while on descent was also incorporated 
between  the  initial  approach  and final landing  con- 
figurations,  as  described  in a later  section. 

Aircraft  Operating  Characteristics  and 
Stability  Augmentation  Systems 

Powered-lift  STOL  aircraft  in  the  approach  con- 
figuration  generally  operate at high levels of induced 
drag and on the  backside  of  the  drag  curve. Backside 
operation is characterized  by  a  steepening  of  the 
descent angle with  any  sustained  reduction in air- 
speed, unless  power is increased.  This  longer  term 
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effect is inconsistent  with  the  pilot’s  more  conven- 
tional  and  perhaps  instinctive  use  of  pitch  attitude 
to  bring  about  shorter  term  corrective  changes in 
flightpath  angle,  since  the  long-term  response 
ultimately will stabilize  in  a  direction  opposite to  
that  of  the  initial  response. Details  associated  with 
these  characteristics,  and  their  effect on  pilot  control 
technique, are  discussed in  reference 2. Three 
different  control  techniques or systems  for  dealing 
with  these  characteristics will be  introduced  in  this 
section. 

In general,  these features  require  the  pilot  to 
employ  a  “backside”  control  technique  in  the  landing 
configuration.  The  technique  involves  the  use  of 
power  for  ghdepath  control  and  pitch  attitude 
for airspeed control,  just  the  opposite  of  the  “front- 
side”  technique  used  in  almost all circumstances 
for CTOL transport  aircraft.  The  degree  of  backsided- 
ness exhibited  by  a  particular  aircraft  may  be  such as 
to  require  tight  speed  regulation  in  order to  preclude 
unwanted  changes  in  flightpath  angle.  Contributing 
to  potential  difficulties  in the speed  regulation  task 
are  atmospheric  disturbances,  including  shears,  and 
perhaps  pilot  control  difficulties  in  pitch,  as  may 
arise from  control cross-couplings.  These  cross- 
couplings  may  be  manifested  by  either  unwanted 
pitching  moment changes,  effectively  resulting  from 
modulation of a  thrust  vector  which is offset  from 
the  center  of gravity (a relatively common  problem), 
or  by  flightpath-airspeed  coupling. As an  example 
of the  latter  type  of  cross-coupling,  a  thrust  vector 
inclination angle that is substantially  forward  of  the 
normal  axis  of  the  aircraft will result  in both speed 
and  flightpath  angle  responses  whenever  thrust is 
changed; this will usually  require  a subsequent 
change  in pitch  to  prevent  undesired excursions. 
This  situation will generally  exist during  the  conver- 
sion to  powered-lift,  where  progressive  changes  in 
configuration, usually  increasing  flap  angle,  have the 
effect  of  deflecting  the  thrust  and  correspondingly 
rotating  the  thrust  vector  from  the  longitudinal 
axis  (approximately)  toward  the  normal axis. 
Although the effects of these  intermediate  inclination 
angles  can  be tolerated  for  the relatively short  period 
of  time  required to  make  the  conversion,  sustained 
operation in these  configurations is undesirable. A 
thrust  vector  inclination  than is aft  of  the  normal 
axis,  caused  by  a very efficient  and  perhaps excessive 
thrust-deflection  mechanism,  could have even more 
profound  implications,  evoking the distinctly  uncon- 
ventional  response  of  slowing  down,  unless  the  pilot 
also  pitches  down,  when  power is added. 

The use of  a flight director  that  incorporates 
control  position  direction  for  throttle  and  pitch 
attitude,  in  order to help  maintain  specified  glidepath 
and  speed  references,  simplifies this aspect of the 
control  task.  The  reduced  workload  resulting  from 
more  closely  controlled  aircraft  responses to  any 
existing  cross-couplings or  any  other  disturbances 
enables  complex  terminal-area  approach  tasks  to  be 
realistically considered.  This case of  dealing  with 
these  thrust-vector-related  cross-coupling - as they 
may  exist  for  any  particular  aircraft,  without  the aid 
of  any  associated  stability  augmentation  system - 
will be  referred to  throughout this  report as the 
“basic” control  configuration. 

The  degree  of  backsidedness  may be  severe enough 
to  require the use of  an  automatic  speed-control 
and  stability  augmentation  system (SAS) to  accom- 
plish the very  tight  speed  control  required,  and  hence 
reduce  pilot  workload to  acceptable levels. A desir- 
able  design would  incorporate  a device that could 
modulate  longitudinal  thrust-drag forces  over  a 
moderate range with  rapid  response  characteristics 
and  without  affecting  lift. This SAS would  be 
described  as  a  “backside  speed  control SAS” since 
it is associated  with  correcting  the  relatively  small 
but  consequential  speed  errors arising  from  maneuver- 
ing and  any  inherent  cross-coupling arising from use 
of the  backside  control  technique.  Perhaps  equally 
important, it would also assist in  offsetting  undesir- 
able effects  due to low-frequency  atmospheric 
disturbances  such as wind  shears. For  this  variation 
in  backside  control  technique,  the  primary  control 
task of  glidepath  tracking is still achieved through 
power  modulation. Because the  speed-control device 
carries out  the  secondary  control  task of  maintaining 
adequate  safety  margin,  pitch  attitude assumes a 
tertiary role of governing the  descent trim condition, 
allowing the  approach  to be  flown  with an essentially 
fixed pitch  attitude. This  definition  of  control 
functions,  together  with  the assignments pertinent  to 
this  particular  control  concept, is one  that will be 
referred to  throughout this  report. 

Alternatively,  a  means  of  producing  greater 
longitudinal  control  authority  might provide  enough 
thrust-drag  force  modulation to  allow the  aircraft 
to be  flown  using the  frontside  control  technique 
despite the fact that  it  may be operating on the  back- 
side of  the  drag curve.  Under  these  circumstances, 
large  changes in  induced  drag caused by  pitching  and 
changes  in the  component  of gravity  along the 
flightpath  can  be  adequately  offset,  hence  allowing 
use of  a single pilot  control  technique  throughout 
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the  entire flight  envelope.  Use of  an  automatic 
speed-control  system t o  modulate  the  longitudinal- 
force device ensures the very  close  speed  regulation 
required  at  these  backside  operating  points,  despite 
the  otherwise  upsetting use of  pitch  attitude  for 
glidepath  control. In the  approach  configuration, 
the  pitch  attitude,  the  longitudinal  force device, 
and  the  power  setting  are assigned to   the  primary, 
secondary,  and  trim  control  functions, respectively. 
Two  important  additional  considerations  that arise 
with use of  this  "frontside  speed  control SAS" are 
(1) the  adequacy  of  initial heave response that  can 
be  obtained  through  pitching  and (2) the  effect  that 
large  changes in  the  longitudinal  force  control  may 
have on lift.  These  factors will be  the subject  of 
later discussion. 

This discussion also  explains the  frequently 
encountered  terminology  that  describes  the  trim or 
auxiliary  longitudinal  control as a  redundant  control. 
Any two longitudinal  controls,  each  having  sufficient 
authority,  can  be used to  control  the  two linear 
degrees of  freedom (velocities) in  the aircraft  plane  of 
symmetry, leaving the third  control  redundant.  This 
terminology is only  relevant  when the third  control 
also has  sufficient  authority,  and  speed of  response, 
to  be  considered  an  alternative  for  providing  control, 
thus  making  a  variety  of  control  concepts possible. 

The  three  STOL  control  concepts  considered 
above  (basic aircraft,  backside  SAS,  and  frontside 
SAS) are  representative of  the  wide  spectrum  of 
possibilities  for  this class of aircraft.  Although  they 
have been  the  subject  of earlier  research  (ref. 1 l),  
they have not previously been  evaluated  within  the 
context  of  a  complex  operational  approach task 
nor in  an  environment  requiring  attention  to trim 
management. Details of  their  implementation  for  this 
flight  investigation  are  presented  in  the  following 
section. 

11. TEST  AIRCRAFT  AND  CONTROL SYSTEM 
IMPLEMENTATION 

General 

The  Augmentor Wing Jet  STOL Research  Aircraft 
(AWJSRA) is a de Havilland of  Canada DHC-SIC-8A 
Buffalo  airframe  modified  with  an  augmentor flap 
system (figs. 2 and 3). The  integrated propulsive- 
lift  system  incorporates  two  Rolls  Royce  Spey 801 
split-flow  turbofan  engines  providing  cold  fan  thrust 
to  internally  blow  the  augmentor flap for powered 

lift.  The residual hot thrust  (approximately 60%) 
can  be  independently  vectored over a range of 98" by  
means  of  two  conical  nozzles,  thereby  providing 
generous  (and  immediate)  steep  descent  or  go-around 
capability  over  a range of  about 12" o f  flightpath 
angle. The  cold  thrust  is  cross-ducted  in  appropriate 
amounts so that  minimum  asymmetric  lift  results in 
the event of engine  failure. 

Pitch,  yaw,  and roll controls  are  hydraulically 
powered. A single-segment elevator is used for  pitch 
maneuvering and  trim,  and  a two-segment rudder is 
used for  yaw  control. Roll control  is  provided  by 
blown  ailerons,  outboard  upper-surface  spoilers, 
and  augmentor  chokes  that  are  scheduled  with wheel 
angle and  flap angle in  order to maintain  constant 
roll-control  sensitivity  as  speed is reduced.  The 
augmentor  chokes  consist  of  surfaces  located  within 
the  augmentor  flap  segments.  For roli control  they 
function  by  differentially  restricting  the  augmented 
airflow  through the  outboard  segmented flap section, 
thereby  asymmetrically  altering the spanwise  lift 
distribution. 

In the  approach  configuration,  engine  power 
controls  the  magnitude  of  the  flap-deflected  cold 
thrust  and  nozzle-vectored hot  thrust.  The  direction 
of  the  latter  can  be  independently  vectored  between 
6" and  104" relative t o  aircraft  datum.  Typically, 
the  nozzles  are  deployed t o  a  setting  near 75" to  80" 
for  steep  descent  in  order to  provide both additional 
drag  and powered lift  in  the  approach  configuration. 
Modulation  of nozzle angle in the region between 
about 45" and 104" provides independent  longitudi- 
nal force  control while also contributing an approx- 
imately  constant  amount  of powered lift  separate 
from  that  furnished  by  the  augmentor flap. Provision 
exists  for  a  modest  amount  of  direct-lift-control  (dlc) 
through  symmetric  actuation  of  electrohydraulic 
choking  surfaces designed as  part  of  the  inboard 
augmentor flap segments;  however,  the  pilot  has no 
direct  control  over  this  function. Figure 4 illustrates 
the  overhead  cockpit  control  layout used for  pro- 
pulsion  system  management.  The physical charac- 
teristics of  the  aircraft  are discussed in  greater  detail 
in  references 12 and  13. 

Basic Angular  Stability  Augmentation 

Limited  authority  electrohydraulic  actuators  are 
incorporated  in series with  the pilot's pitch, roll, 
and  yaw  controls;  they  are driven by  the  attitude 
SAS to provide  rate  command,  attitude-hold  charac- 
teristics  in  pitch  and  roll,  and  rate-damping  and  turn- 
coordination  characteristics  in  yaw.  This  SAS  mode is 
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Figure 2. - Augmentor Wing Jet STOL Research  Aircraft. 



AUGMENTOR FLAP 

Figure 3.- Augmentor  wing  propulsive lift system. 
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Figure 4.- Overhead  propulsion  system  controls. 
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available for use at speeds  below 140 knots,  although 
the  requirement  for  its use is only  significant in  the 
approach  configuration  at  speeds below 90 knots. A 
trim follow-up circuit  in  pitch slowly  repositions 
the pilot's control  to  restore  the full authority of 
the series pitch  actuator. 

The  pitch-attitude  SAS  in  particular is a useful 
workload-reducing  feature  which is gaining  wide 
acceptance  for  this class of  aircraft.  Often  the  need 
for such a  system  derives not  only from  the  low 
stability  inherent in low-speed  flight, but also from 
significant  variations in the  aerodynamic  center of 
pressure,  or  from  induced-flow  effects at  the tailplane 
which  may  occur  either  during  transition to  powered 
lift  or while modulating  the propulsive-lift controls 
used  for  longitudinal  path  control  in  the  approach 
configuration.  These  difficulties  are  minimal  in the 
AWJSRA,  however,  because  of  the T-tail arrangement 
and the high  degree of center-of-pressure  stabilization 
effected  by  the  internally  blown  augmentor flap. In 
addition,  the  thrust lines of the  vectorable  hot-thrust 
nozzles  are  located  close to  the  aircraft  center of 
gravity  range: thus,  they minimize  pitching-moment 
changes  arising from  their  sometimes aggressive and 
rapid  use. The  practical  results  of  these  design fea- 
tures,  beyond obvious  implications  for  tailplane 
design,  are (1) trim  follow-up  at  the pilot's control is 
barely perceptible,  and (2) maximum  SAS  authority 
for  maneuvering and  for  pitch  stabilization in gusts is 
retzined.  Although  the  SAS  actuator has  only 40% 
authority over the  elevator  (unmodified  from  the 
original  Buffalo  dimensions), it has  good  margin  from 
saturation, even during  such  demanding maneuvers 
as go-around.  The  rate-command  attitude-hold  pitch 
SAS was employed for all evaluations  reported  here. 
Details  of the  rate-command  attitude-hold SAS are 
given in reference 11.  

Performance Envelope: Descent  Configuration 

Data  describing the trim control  positions  for 
this  aircraft  in  the  descent  configuration  without 
any  form  of speed-control  augmentation are  shown 
in figures 5 and 6 for  the cases of (1) fixed  nozzle 
and (2) futed throttle. In  each  case  a  substantial 
amount  of  flightpath  authority is available  over 
the useful  range of operation  of  the variable pro- 
pulsion  system control,  either  throttle  or  nozzle. 
It was  explained  in  a  previous  section  that  this 
authority  can  be  significantly  eroded unless proper 
attention is given to  the setting  chosen  for  the futed 
control,  which is used for  trim.  The basis for  deter- 

mining  these  settings is described  in  a  subsequent 
section that details  the  trim  management  portion of 
flight director design. 

In the  first  case,  in which the aircraft is flown  with 
a  backside  control  technique  using  throttle  for 
glidepath  control, adverse coupling  between  the 
responses in  glidepath  and  in  speed to  power  changes 
is evidenced  by the  slope  of  the  constant  attitude 
contours  shown  in figure 5. This  requires  the  pilot 
to  unconventionally  coordinate  pitch attitude  and 
power,  pitching  down  in  order to maintain  speed, 
for  example,  whenever  power is added to  effect  an 
upward  correction.  The degree of  this  effect is 
strongly  influenced by  the  trim nozzle  angle that is 
employed. I t  becomes  more severe  for steep  descents 
in  tailwinds,  where  large  trim  nozzle  deflection 
angles  are  required in  order t o  preclude  unacceptably 
low  power  settings that would  result  in  undesirably 
high angles of  attack. 

This  coupling  characteristic of  the basic  aircraft 
configuration  can  be  removed  by  incorporating the 
backside  speed-control  SAS  mentioned  in  the  pre- 
vious  section.  The  responses  can  be  effectively 
decoupled  by  a  speed-hold  SAS  which  conceptually 
rotates  the  constant  attitude  contours  until  they 
are vertical. This is accomplished  through  small 
changes  in  nozzle  angle  that  offset the longitudinal 
thrust  or drag  changes  associated with power adjust- 
ments. Maintaining the particular  pitch  attitude 
appropriate  to  the desired operating  point  ensures 
that  the mean  nozzle  angle about  which speed control 
occurs,  and  the average power setting needed to track 
the  required  glidepath, will be  correct  for  the wind 
conditions  of  the  day. 

Analysis  of  figure 6 indicates the mechanism 
of the  frontside  speed-control SAS  which was 
implemented for the  aircraft.  The  nearly  vertical 
orientation of the  constant  angle-of-attack  contours 
represents the nearly  ideal function of the nozzles 
as a  longitudinal  thrust-drag  control,  at  least  in  the 
region of 80" _+ 25". Automation of this function 
enables  pitch  attitude  to  be used aggressively for 
glidepath  control, since the nozzles have enough 
authority  to offset the  corresponding changes in the 
longitudinal  component of  gravity,  as well  as the large 
but  temporary changes  in  induced drag  that result 
from  the  associated  angle-of-attack  transients. These 
dynamics  require that  the nozzle  follow the  pitch 
changes  almost  immediately to  prevent  speed 
changes;  this is unlike  the case for  conventional air- 
craft in which  the  requirement  for  thrust changes 
presents  a  substantially  lower  frequency  control  task 
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Figure 5.- Descent  trim  conditions,  nozzles  fixed. 
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relative to  the  more active pitch  control  inputs.  The 
rounding  of  the  angle-of-attack  contours  in  the  upper 
portion  of  the  envelope is caused  primarily by  the 
loss in  the  hot-thrust  component of lift as the nozzles 
are  retracted to  their  up  position,  for  example,  during 
the  course  of  a large  upward  correction. In the  speed- 
hold  system that was implemented,  this  lift loss was 
experienced  as  a  reduction  in the  steady-state  flight- 
path angle  response to  pitch  attitude  control, since 
with  constant  speed this lift  could  only  be  furnished 
through an increment in the angle of  attack. In 
fact,  the  inboard  augmentor  chokes were  used to  
reduce  this  undesirable  effect, as described  later. 
Similar to  the  other  control modes,  proper  choice 
of the  power  setting  used  for  trim  ensures that  the 
mean  pitch  attitude  and nozzle  angle  used in the 
course  of  tracking  the  glidepath  result  in  the  preserva- 
tion of adequate  control  authorities  and  safety 
margins. 

Table 2 summarizes  the  control assignments  for 
the  three  control  concepts  just discussed. It  should  be 
pointed  out  that  the  earlier research  of  reference 1 I 
had  already  identified  the  fundamental  handling 
quality  issues  associated  with  these  STOL  control 
concepts. This  enabled  a design to  be readily dev'el- 
oped,  particularly  for  the  frontside  speed  control 
SAS, which incorporated desirable  features into  a 
more  operationally  usable  system as  was needed  for 
this flight investigation,  and  which also more closely 
approached an operational design  for  an  aircraft 
such as this.  The  design  details will now  be  discussed. 

Speed Control SAS Systems  and  Response 
Characteristics 

Both  versions  of the  speedcontrol SAS  can 
be obtained  from essentially the same  mechaniza- 
tion, since the  system will act  to  maintain speed  at 
the  reference value  regardless of  which  control 
(or  outside  disturbance)  may  be  the  cause of an 
error.  The  system,  which is shown  conceptually in 
figure 7 and in detail  in  figure 8, was implemented 
using the research  avionics  system  described  in a 
following  section.  The  system relies on nozzle  vector- 
ing  in the range  of 45" to  105" for  the necessary 
longitudinal  force  modulation.  Consequently,  speed 
control  by  this  means is only effective  during  steep 
descent,  that is, when the nozzles  are  typically 
deployed to  this range in  order  to  help  furnish  the 
large amount  of  net  drag  that is in  any  event  required. 
After  the  nozzles  are  deployed to  initiate  the  descent, 
the  speed-control SAS  becomes  active, if selected. 
From  the figures, it is noted  that  the  fundamental 

outer  velocity  loop  has  its  reference value controlled 
indirectly  by the pilot  through his selection of  flap 
angle,  obviating the need for  any  additional  action 
to  manage the speed  SAS,  once  selected.  The  schedul- 
ing  of  this  speed  reference to flap  angle is discussed in 
more  detail  in  a  later  section that describes the 
design of  the flight director. 

The  loop  structure used in  the design of the 
speed-control SAS includes  a  direct  feed-forward 
from  pitch  attitude to nozzle  angle  in  order to 
immediately  compensate  for  changes  in  the  com- 
ponent  of gravity  along the  flightpath.  This  structure 
assists with the higher-frequency  loop  performance 
resulting  from  occasionally aggressive pitch-attitude 
maneuvering  and  reduces  substantially  the gain which 
would  otherwise  be  required  in the velocity  feedback 
loop.  The  velocity  feedback  loop provides  gust and 
shear  protection,  ensures  following  of  the slewing 
reference  when  flap  settings  are  changed,  and  com- 
pensates  for  minor  inadequacies  associated  with the 
pitch  maneuvering  term.  The use of a  second-order, 
0.25-rad/sec  complementary  fiter on the airspeed 
feedback  quantity,  rejecting  turbulence  but  retaining 
the  higher-frequency  inertial  response,  further 
leads to good bandwidth in response to maneuver- 
generated  inputs  without  excessive  or  objectionable 
nozzle  activity  arising  from  atmospheric  disturbances. 
An integrator,  included to  prevent  velocity standoff 
errors,  also  provides  a  means  for  trim  positioning  of 
the nozzles  (a  feature  discussed  in  more  detail in 
conjunction  with  the flight director design). 

It is desirable to increase the relatively  pure 
longitudinal  force  modulation  available  from  the 
vectoring  nozzles  by  extending  their  operation into 
a range  where lift  coupling  may  become  significant. 
The  aerodynamics  require  that  any  lift loss encoun- 
tered  due to nozzle retraction (in the  course of 
moving to  hold  speed  following  a  sustained  upward 
correction,  for  example)  be  compensated  by a 
sustained  increase  in  angle  of  attack,  since  power is 
assumed constant  for  this  configuration.  This  results 
in  a  reduction  in  steady-state AY/AO response  which 
is an  undesirable  feature  that not only  affects  safety 
margins but also accentuates  the  amount  of  pitch 
activity  needed to  obtain  a desired path  change. To 
offset this effect,  the  frontside  speed  control SAS 
incorporated  the  inboard  augmentor  chokes in a 
direct-lift-control  mode,  opening  the  chokes  from  a 
midrange  nominal  position  increasing the  augmentor 
flap  component  of  lift whenever the nozzles retracted 
reducing  their  vectored  thrust  component of lift.  The 
concept is illustrated  in  figure 9. This improvement is 
achieved at  the expense of  carrying  a bias in the 
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TABLE 2.- SPECTRUM OF  STOL  CONTROL CONCEPTS 

Control  concept 

Throttle Primary  control  (path) 

Frontside SAS  Backside  SAS Basic aircraft 

Throttle  Pitch  attitude Nozzle  Trim control 

Nozzlea Nozzlea Pitch  attitude Secondary  control 
Pitch  attitude  Throttle 

(speed) 

aSAS managed 

L 

I OUT I I OUT I WASH  WASH 

t PITCH  ATTITUDE 
FILTERED AIRSPEED 

J 

Figure 7.- Autospeed  control  system  concept. 
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Figure 9.- Nozzle-choke  gearing. 

choke  position  at  the  trim-approach  configuration, 
which  reduces  trim lift  and  results  in  the  need  for  a 
small  increase  in  trim approach  power  setting to  keep 
angle of  attack  at desirable  values.  In the  implementa- 
tion used  here,  the  lift  compensation was  achieved by 
a  direct  gearing  from  nozzle to  choke, and  also 
included  trim  compensation to  maintain the  choke 
bias  position  at 25% of fully  closed  as  the  trim nozzle 
angle varied in the low-frequency  wind field. With 
this  mechanization,  steady-state A'Y/AO ratios of 1.0 
or slightly better were  achieved for  excursions  in 
flightpath  angle  of +4' about  the nominal  operating 
point. 

Additional  high-frequency use of  any  residual 
choke  authority is made,  however,  by  incorporating 
a cross-fed  washout  from attitude,  thus effectively 
providing  heave  damping  augmentation.  Research 
reported  in reference 11 revealed that  the  accept- 
ability of a  frontside  speed-control  system is signif- 

icantly  improved if the  initial heave response to  
pitch-attitude changes  can  be  substantially  quickened. 
Heave damping  corresponding  to Zw -0.9 was  avail- 
able  whenever the  chokes were not  limited  by  the 
higher-priority  nozzle  crossfeed  term.  These  features 
are  shown  in  figures 7 and 8. Because the  nozzle 
excursions  associated with  the backside  speed-control 
SAS are  quite small  (typically k20' maximum)  and 
because attitude  remaim essentially  futed in this 
mode,  no use was  made  of  the  direct-lift  choke 
control  when  the  system was flown  in  this  manner. 

To summarize  the  characteristics  of  the  three 
STOL  control  concepts used in  this  experiment, 
figure 10 presents  the response of each to  a  step-like 
change  in the  primary  control used  for  glidepath 
tracking.  The responses,  derived  from a  piloted 
simulation,  illustrate  the changes in the  pertinent 
longitudinal  response  parameters  for  moderately 
large control  inputs. 
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Figure 10. - Aircraft  responses to  step  inputs  of  the primary  control (various  configurations). 
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Figure 10.- Continued. 
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111. RESEARCH  AVIONICS SYSTEM 

General 

The AWJSRA is equipped  with  a  comprehensive 
and flexible digital avionics  research  system  referred 
to as  STOLAND.  STOLAND  provides  the  primary 
functions  of  navigation,  guidance,  control (via flight 
director  or  automatic servos),  display  generation, 
and  system  management.  The  system is shown 
schematically  in  figure 11 ; it is more extensively 
described in  reference 14. A  laboratory futed-base 
simulation  facility  provided the  means  for  software 
development  and  verification,  and was also  used 
for  pilot  familiarization  and  preliminary  evalua- 
tion  during  the  concept  development stages  of 
the  program. Only those  hardware  and  software 
details that are of  principal  concern to  these  tests 
will be  described  here.  A  separate  section is devoted 
to  flight  director design  features. 

Horizontal Navigation Features 

As  is shown  in figure 12, aircraft  position esti- 
mates  obtained  from  conventional  ground-based 
navigation facilities are combined  with  data  from 
aircraft-futed  inertial  sensors by means  of  third-order 
complementary filters. The  resulting  smoothed 
position  estimates  (referenced to  runway  coordinates) 
are then used in  the pilot's map  and display system, 
and  for  calculating the guidance errors relative to  the 
desired  R-NAV flightpath.  Appropriate provision is 
made  for  filter  initialization;  a  dead-reckoning  mode 
is included  in  order to  maintain  navigation  in the 
presence  of temporary losses of navaid signal, or 
whenever  changes  in the raw position  measurements 
temporarily  exceed  prescribed  tolerances.  Resolution 
of  the  filtered  position  data is 1.22 m (4 ft)  due  to 
software  scaling (in the  fixed-point  arithmetic  com- 
puter) regardless of  the navigation  source that may 
be  feeding the calculations. An estimate  of  ambient 
winds is also  available as shown in the figure. 

The  algorithms  employed  are  essentially  those 
described in reference 15; however,  it was found 
necessary to  operate  with higher complementary 
filter  gains  in  the TACAN region,  which  had  the 
effect of suppressing the integrated  history  of  the 
aircraft-fixed  inertial  data  and  emphasizing  instead 
the raw TACAN data.  This was  required  in  order to  
reduce  errors  in  position  estimates that would  other- 

wise be generated  by  prolonged gimballing  errors in 
the  verticil  gyro  entering  the  position  calculation 
via the axis-transformation  equations,  following 
steep  climbing  turns  to  the  downwind leg. Once 
in  the MODILS  region,  these  moderate  fdter  gains 
were  initially  maintained  until the aircraft  was 
within 60' of  the  runway  heading,  whereupon 
gains  were smoothly increased further to  values 
appropriate to  the precision final straight  approach 
segment.  Differences in  the raw  position  estimate 
at  the  instant  of changeover to  MODILS  were 
accommodated  by re-initializing the navigation 
filter  position  outputs  to  the new  raw  values, thereby 
preventing  transients  from  propagating  through the 
filters  as  erroneous  velocities  and  upsetting the 
guidance  laws.  Discrete  changes in position on the 
pilot's displays  were  prevented by  applying an  accept- 
able rate  limit to the otherwise  instantaneous  position 
transient.  The same protection was incorporated  to 
allow single, or successive, smooth recoveries  from 
the dead-reckoning  mode caused by  temporary loss, 
or tolerance  exceedance, of  navaid signals. This 
frequently  occurred when  passing  close  abeam the 
TACAN station on the  downwind  leg;  however,  it 
lasted  only  for  short  intervals  and  thus  had no major 
effect on the  net  quality  of  navigation. 

During the final straight localizer  tracking 
segment  following turn  rollout, across-track naviga- 
tion  continued to  be  furnished by  the  fdter  shown in 
figure 12 with  the  increased gains shown,  but  with no 
increase  in  resolution. 

Vertical  Navigation Features 

Vertical  position  and  rate  measurements  were 
obtained  from  a  second-order  complementary  filter 
which  combined  normal  acceleration  in  Earth axes 
with  either  standard  barometric  altitude  or vertical 
position  calculated  from the MODILS azimuth, 
elevation,  and range data.  No  correction was  incor- 
porated to account  for  nonstandard  atmospheric 
conditions, so that  true  inertial  height  estimates 
could not be  obtained  until  within  the MODILS 
zone of coverage. The  difference  in  vertical  position 
that typically  occurred was removed  over a period 
of 60 sec. In the case of  the  approach  profde 
geometry  chosen  for  this  investigation, this transi. 
tion did not occur  until  halfway  around  the final 
turn, where on hot days  a  flightpath  angle  which 
was temporarily  steeper  by as much as 1" could  be 
required. However, this  system  deficiency  did not 
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Figure 1 1 .- STOLAND research  avionics  system. 
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make  itself  apparent to  the  pilot  during  the  low gains 
operative  during  the  more  loosely  tracked  turn 
segment.  This  detail  will not receive further com- 
ment, because it is presumed that a  refined  R-NAV 
system  would  have  a  correction  feature  incorporated, 
and  that associated altitude  measurement  transitions 
would not in that case be  limiting.  Alternatively, 
the wider azimuth coverage (k40") available from  an 
ICAO type MLS installation  combined  with  different 
approach  profile  geometry  could  provide  the  required 
inertial  height  estimate  prior to commencing  descent. 

During the final straight  approach  segment,  a 
separate  third-order  complementary  filter  operating 
with an order-of-magnitude  improved  resolution 
provided the quality  of  glidepath  error  and  rate  data 
considered  necessary  for  precision  tracking; it also 
avoided  any  offsets that might arise from  installa- 
tion  or  calibration biases in  the  normal  accelerometer. 

Some of the  horizontal  and vertical navigation 
discontinuities  just  discussed  are  illustrated  in fig- 
ure 13. Errors  in XY position  in the TACAN zone are 

TO X  FILTER 

assumed  for  the figure to be  exclusively  a result of 
a  constant bias error  in  the TACAN  range  measure- 
ment,  and  the vertical  position  error  presented arises 
from  the  influence  of  nonstandard  hot-day  conditions 
on  true (relative to  standard  barometric)  altitude 
above  station.  Alternative  means,  such as  synthesis 
of  a  new  path from the TACAN-to-MODILS  delivery 
point,  could  be devised to  deal  with  these difficulties. 
Feasible methods will be  influenced  by  (1)  the 
delivery  volume  probabilities that are  associated with 
the  en  route  or  nonprecision  terminal-area navigation 
facilities; ( 2 )  the  performance  capabilities  of  the 
aircraft; (3) the  obstruction clearance or  other 
routing  tolerances allowed for  a  particular  approach 
profile; (4) the  computational  capability  of  the 
avionics;  and (5) passenger comfort  and  pilot 
acceptance  factors  associated  with  making  the 
correction. 

Admittedly,  the  system  developments  found 
necessary to provide the  quality  of area  navigation 
needed  for  the  curved-approach  profde  in  this  work 
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figure 14, and  the  detailed  elements of the MFD 
and EADI are shown  in figures 15  and  16. 

Multifunction  display- The  primary  utilization 
of  the  MFD  map display is for  approach progress 

+ + TACAN RANGE monitoring  (way  point sequencing), for  a  coarse 
MEASUREMENT measure of  tracking  performance,  particularly  during 
BIAS ERROR , 

TACAN  SITE 

TO MODI LS .*...... CONTROLLED 
TRANSITION 
TRANSIENT 
TO MODI LS 

(a) NAVIGATION ERRORS RESULTING  FROM  BIAS ERRORS 
IN TACAN  RANGE  MEASUREMENT 

AIRCRAFT  HEADING 
#/ACTUAL PATH WITHIN 100" OF .# 

RUNWAY HEADING/ A - "J. - --- \/H PROFILE 
'STANDARD ATMOSPHERE 

- NONSTANDARD 
ATMOSPHERE 
ALTIMETER ERROR 
FROM  TRUE 

.***.... 60 sec BLEND TO MODILS 
TRIANGULATED  HEIGHT 

(b) VERTICAL  NAVIGATION  ERROR  DUE TO NONSTANDARD 
ATMOSPHERIC CONDITIONS  (HOT  DAY  AT SEA LEVEL) 

Figure  13.-  TACAN to MODILS transition  transients. 

are  largely  peculiar to  the  aircraft, avionics,  and 
navaid  system combination of  this  investigation. 
The  existence  of an acceptable  navigation  environ- 
ment was presumed in this  work so that performance 
and  handling  related  issues  could  be  investigated. 
As a  result,  the  consideration of a  more  general 
navigation  environment  when  assessing  the  overall 
feasibility of  these  approach  profdes  would  be an 
important  corollary  of  the  present  study. 

Cockpit Displays 

An electronic  attitude  director  indicator (EADI) 
and  multifunction  display (MFD)  provide  control 
direction  and  situation  monitoring  information  to 
the pilot.  The  integrated  nature  of  these  displays 
contributes greatly toward  the  reduced  workload 
necessary to  make the curved-approach  task feasible. 
The general cockpit display layout is shown  in 

curved  segments,  and  for  establishing  initial  profde 
capture  trajectories.  The  map display  can be  used, 
at  the pilot's discretion,  in  a  north-up,  course-up,  or 
heading-up  mode  with  any  one  of  the  three  different 
display  sensitivities  shown in figure 15.  Approach 
progress monitoring is of major importance to the 
pilot  because it alerts him to impending  configuration 
changes  required  as way points are approached. 
Other  information  pertinent to the  approach is also 
presented,  for  example, navaid signal status  and 
reliability.  Ambient  wind  estimates  measured  by the 
system  in  runway  coordinates  provide  assistance to 
the  pilot  in his planning  of  the  deceleration  proce- 
dure;  also,  they  are  intended to  furnish  some  anticipa- 
ticn  of  potential  shear  situations if the  displayed 
winds  are substantially  different  from  the  reported 
surface  winds  at the  STOLport. 

Electronic Attitude  Director Indicator - The 
EADI,  the  primary flight instrument,  contains  the 
elements  shown in figure 16.  Some  constituents 
of  this  display will be  discussed in detail  here.  The 
flight director  symbols are  discussed  in a  later  section. 
It should  be  noted  that  this  display,  although elec- 
tronic,  does  not  differ greatly in essential  features 
from  modern  electromechanical  attitude  director 
units. 

Basic attitude  presentation: Relative to  the  central 
futed  aircraft  symbol, the inertially  referenced  atti- 
tude  map  provides basic orientation  and  stabilization 
information to  the  pilot. In addition  to  its  obvious 
importance  in  a  stability sense  for a backside  unaug- 
mented  aircraft,  pitch  attitude as a trim  parameter 
also  assumes a greater importance  for  powered- 
lift  aircraft,  primarily because  of the  nonunique 
relationship  of  angle  of  attack  (and  hence  safety 
margin) to  speed.  Consequently,  a  more sensitive 
pitch scale is generally  required to allow the  pilot t o  
observe small attitude  excursions,  and to set  or 
maintain  a  pitch  attitude  often  within  a  degree  or 
less. The  pitch scale  sensitivity  used  here  was  8'/in., 
more  than  twice  that usually  employed  in  CTOL 
attitude  indicators. By increasing the  awareness  of 
modest  intentional  or  inadvertent  departures  from 
the  trim  approach  attitude, this high  display sensi- 
tivity  can  also  support  the use  of pitch  attitude as a 
secondary  control  to regulate  speed when  power is 
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Figure 14.- Cockpit displays. 
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Figure 16.- Electronic  attitude  director  indicator. 



used for  path  control, as in the case of  the basic of  the aircraft  drift  angle  computed  from  a  resolution 
aircraft.  For  these  smaller,  precise,  predominantly of the navigation  filter ground velocities into aircraft 
low-frequency  attitude  changes,  the  following  of  a coordinates.  The  display is registered  with the  per- 
pitch-director  bar is a relatively  easy task. However, spective  runway so that is presents the aim point  of 
for  the larger, higher-frequency  pitch  excursions the  current  aircraft velocity  vector relative to  the 
associated with  employing  a  frontside  glidepath intended  touchdown  point. 
control  technique  at  low  speeds  (where to  obtain Path  deviation  window:  The  path  deviation 
the same path  correction  in  the same time as  can  be window,  referenced to  the central  fixed  aircraft 
achieved by  a  CTOL  aircraft  approaching  twice as symbol, provides  lateral and vertical situation  data  for 
fast  requires  twice the  attitude change  in the same monitoring  the  net  outer-loop  tracking  performance 
t h e ) ,  this  higher  Pitch-scale  sensitivity may  not  be achieved  along the reference  trajectory  in response to 
appropriate,  Perhaps  unduly  emphasizing  Pitch the flight director  commands.  It is not  intended  that 
activity to  the  pilot.  This  issue is further discussed the  box  play  any  direct role in the flight director 
in  the  section  describing  the flight director design. control or pathetracking  tasks,  but  it  does  fulfill  the 

Perspective runway  display:  This  display is vital role of allowing the pilot to  monitor  system 
calculated  from  Position  data  derived  from the performance  according to some  set of operationally 
MODILS  system and Provides a Perspective Presents- relevant  criteria.  Most  important is the pilot's percep- 
tion  of  the  runway. Angular  scaling is determined  by tion of  position  approaching  decision  height,  where 
the  underlying  attitude  scale, dowing  registration satisfactory  positioning  within  a window of appro- 
with  the  flightpath angle  bar  (discussed next)  and priate  dimensions  serves as a  criterion, similar to 
providing a  lateral field of  view  of k20" on  the current  CTOL  Category I1 regulations,  for  continuing 
12.7-cm (5-in.) wide  display  face.  Since  the  display the  approach.  The  dimensions of the  flight  corridor 
is a  head-down unit, angular  correspondence  with  the chosen to  be  represented  by this  box  decrease 
outside  world is not  necessary.  Indeed, Viewing smoothly  toward  landing, as shown in figure 17.  The 
distances to  the  pilot's  eye are  typically 3 times  the vertical dimensions of the  tracking  box  approaching 
18 cm (7.1 in.) for  which  precise  correspondence 
would  occur.  To  improve visibility and  harmony Of 

the  presentation  at  long ranges,  runway  dimensions 
of 1220 m (4000 ft)  by 122 m (400 ft) are used, 
with  an  electronic  threshold  coincident  with  the 
MODILS glidepath  intercept  point.  This  display 
feature  has  been  found  desirable in other  studies,  and 
was  used for a number of  the evaluation  approaches 
reported here. Comments on its  utility are  presented 1 

in a later  section. 1 
Flightpath  angle  bar:  The  flightpath  angle bar dis- RANGE  CORRESPONDING  TO 

plays the  quotient  of  inertial  height  rate  and along- ROLL-OUT WAY  POINT 

track  groundspeed,  and  represents  the  direction  of RANGE  CORRESPONDING  TO 
the  longitudinal  velocity  vector  above  or  below  the 
horizon.  It is displayed  against the gyro  horizon  in 
units  of  degrees.  The  pilot  generally uses this  param- 
eter, as he  does  rate  of  descent  in a CTOL  aircraft, 
to  dampen his corrections  to  the  reference glide 
slope  by  making  specific  angular  adjustments  appro- 2o 

priate to  recapturing  the  reference  with  the timeliness 
he desires. This damping is included in the flight- 
director  command-bar  mechanization,  however, so 
that for  the  investigation  reported  here the  flightpath 
angle bar provides  auxiliary  situation  and  monitoring 
information regarding the  performance of the flight- 

bar is free to  move  laterally  according to an estimate  window. 

215.24 m 
(50 f t )  

- 

227.9 m (91 f t )  

RANGE  CORRESPONDING 
TO HEIGHT OF 91.4 m (300 f t )  

director commands- While in coverage, the Figure 17.- Scheduled  dimensions of path deviation 
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the decision  height  were  chosen for  purposes  of  initial 
evaluation to be  those  specified  for  CTOL  Category I1 
operations, that is, k3.66 m (k12 ft)  at 30.54 m 
(100 ft).  The  lateral  dimensions  were  loosened 
somewhat  from  these  standard  criteria,  however, 
to  induce  unanticipated  lateral  offsets  at  breakout, 
hence  providing  a  more challenging final visual 
segment to  the approach  and  landing  task. 

IV. FLIGHT  DIRECTOR  DESIGN  FEATURES 

The key  element  contributing to  the feasibility 
of the  curved,  decelerating  approach is the flight 
director.  The  flight-director  software  embodies  mode 
selection,  speed  control,  path  guidance,  control 
blending,  trim  management,  and  performance 
monitoring  features,  and  presents  command  and 
status  information to  the  pilot on an  integrated 
primary  display unit.  Only  the  longitudinal design 
of  the flight director will be described here.  The 
lateral  director design,  which is relatively  conven- 
tional, is adequately  described  in figure 18; its  corre- 
sponding gains  are indicated  in  table 3. 

The  functional design of  the  longitudinal flight 
director  for  the basic aircraft  configuration is 
summarized in figure 19. I t  also  applies to  the  back- 
side or  frontside  speed-control SAS configurations 
before  deployment  of  the nozzles for  steep  descent 
and  automatic  speed  control. In addition to  the 
basically  conventional  implementation  of  pilot-mode 
selection,  and  guidance  and  control  position  feedback 
laws,  three  unique  design  features  were  incorporated: 

1 .  Means to  smoothly  handle  the  changing 
effectiveness  of pitch  and  throttle  controls, which 
occurs  during  transition to powered-lift,  by  means 
of configuration-dependent  control  blending 
coefficients. 

2. Means to  minimize the  pilot  action involved  in 
setting  the  decelerating  reference  speed. 

3.  Mechanization  of  an  additional  director  cue 
suggesting an  appropriate  setting  for  the  third 
auxiliary  control  used  for  trim. 

Pilot  Mode  Selection 

As illustrated in figure 19, the  pilot is able to 
select a full range of flightpath  and  speed  references 
at his cockpit  mode  select  panel,  shown  in figures 1 1  
and 14. Although  the flight director  system devel- 

oped  for this investigation  can  be  employed in  any 
separate  or  combined  path-speed  modes  shown, 
exclusive  use is made  of  the R-NAV mode  for 
generating the curved  descending  reference  approach 
profile of  these  tests. As a  minor  detail,  the  system 
automatically  converted  from R-NAV curved-path 
tracking to the straight-in  MLS  tracking  mode at 
way point 6 ,  the  rollout way point,  with  an asso- 
ciated  inconsequential  transient. No change in  control 
laws  was  involved, although  the  means  for  determin- 
ing the reference  flightpath  became  substantially 
simplified  in  this  final  straight  rectilinear  flightpath 
segment. Use of  the  two available means  for  deter- 
mining the speed  reference is described next. 

Speed  and  Deceleration  Control Modes 

Two  methods  for  furnishing  an  airspeed  reference 
to  the system  are  available.  One  involves  direct selec- 
tion  by  the  pilot  through  the airspeed  reference  slew 
knob  located  on  the pilot’s mode  select  panel 
(figs. 1 1  and 14). The  pilot  can  select or  hold  any 
airspeed  within the allowed flight envelope of the 
aircraft.  The allowed flight envelope at  any flap 
setting is typically  determined  in  the high-speed 
region by  the flap or airframe  structural  limitations, 
and in the low-speed  region by  aerodynamic  safety 
margins; it  can  be  interpreted as  a  deceleration 
corridor  which is negotiated  during  the  change  from 
the aircraft’s conventjonal  cruise  configuration to 
its  STOL  landing  configuration.  It  would  be  undesir- 
able,  however, to require  the  pilot  to  manually  select 
a  lower  airspeed (with  the slew knob)  each  time  that 
a  configuration  change (e.g., flap or  nozzle  angle 
setting)  was  made  toward  the final landing  configura- 
tion.  Consequently,  a  flap-dependent airspeed 
schedule is incorporated.  The  schedule allows the 
speed  reference to  automatically  lower whenever 
more  flap is selected,  without  further  action  by  the 
pilot. To invoke  this  programmed  schedule,  the 
pilot  has  only to  select  a  single  Full Auto button 
(figs. 1 1  and 14), which  starts  the  speed  reference 
moving toward  the final landing  speed,  subject to 
progressively  achieving the landing  configuration. 
The final landing speed is automatically  determined 
(and  temporarily  displayed to  the pilot  in  the air- 
speed  reference  window on  the Mode  Select  Panel 
for 5 sec  following his selection  of  Full  Auto)  after 
the desired landing  flap  configuration  and  current 
aircraft  weight  are  entered at  the pilot’s keyboard, 
prior to  entry  to  the terminal  area. 
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Figure 18 .- Lateral  flight  director. 

As shown  in figure 20, the  programmed  speed 
reference  lies  somewhat  above  the  minimum  safe 
speed boundaries for the aircraft'  and  only  just 

'The  minimum  speed  boundaries  are  based on  the lift 
reserve  available  from  angle of attack  at  constant  power. A 
value of 0.69 g  for  flaps less than 30' blends  linearly to  a 
value of 0.4 g  for  flaps a t  65'. The available  envelope is 
enlarged  during  steep  descent,  relative  to  the level flight 
case,  since  the  nozzle  deployment  associated  with  descent 
results  in  a  higher  power  setting  and a relative  increase  in 
propulsive  lift,  hence  permitting a lower level of  airspeed- 
dependent  aerodynamic  lift.  For  each  descent  configuration, 
the trim  power  setting is maintained  relatively  constant  over 
a wide  range  of  trim  aerodynamic  flightpath  angles  by 
suitably  adjusting  the  trim  nozzle  angle.  Consequently,  the 
descent  minimum  speed  boundary is relatively  invariant  with 
wind  condition.  These  criteria for minimum  speed  were  a 
conservative  reflection  of  early  experience  with  this  aircraft. 
A more general  and  rational  set  of  criteria  to  determine 
aerodynamic  safety  boundaries for powered-lift  aircraft 
(that  have  since  been  applied  successfully to  this  aircraft) 
are  proposed  in  reference 4. 

below  the  flap  structural  limits  until  the final landing 
configuration is achieved.  Consequently,  it  should 
be  interpreted as a  deceleration  schedule,  suitable 
for all aircraft weights. It allows the aircraft to  
negotiate  its  deceleration  corridor using highest 
practical  approach  speeds  up to the  point  that air- 
speed must be  reduced as much as possible in order 
to achieve the desired landing  performance. 

Logic is also  included  that increases the airspeed 
according to the  programmed  schedule  should  the 
pilot  for  any reason reduce the flap  setting  during  the 
course  of  an  approach or for  go-around.  Similarly, a 
speed  reference  that is above the  structural  boundary 
or below the  programmed  speed  schedule  cannot  be 
selected by  the  pilot,  and  if  the  system  is  inadver- 
tently first engaged outside of these  limits  the refer- 
ence  speed will slew to the  appropriate  boundary. 
These  features  ensure  that  an  appropriate  speed 
reference  is  always  readily  available in the  system 
for both accelerating  and  decelerating  maneuvers 
without  significant  pilot  action. 
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TABLE  3 .- FLIGHT  DIRECTOR  GAINS 

Pitch  director Lateral  director Throttle directord d c &MLS I I-NAV  descent R-NAV 
level & 

R-NAV 
level & 
alt . hold 

R-NAV 
descent R-NAV Symbol 

21 

52 

G3 

c 4  

G5 

G6 

G7 

G(z) 

LAG 1 

LAG  2 

MLS 

b 

b 

0.0312 

.416 

b 

.32 

.08 

Description 

Velocity  error 

Acceleration 
damping 

Path  error 

Path-rate  damping 

Nozzle-to-pitch 
crossfeed gain 

Control-position 
feedback 

Control  rate 
damping 

Path-error 
gain scheduling 

Nozzle-to-pitch 
crossfeed lag 

Pitch-rate  feed- 
back smoothing , 

FIS 
alt . hold 

b 0.58 

b .11 

0.3 

152 .O/ Vc 89 .O/ Vc 

38 .O/ Vc 

0 

1.0 1 .29 
I 

b 

basic 

0.4 

.07 5 

.3 

39 .o/ vc 

,085 

1 .o 

.25 

0.4 

.075 

18.24/ Vc 

73.1 

.08 5 

1 .o 

.2 5 

b 

.2 

.2 

.5 

4 .O 

b 

b 

0.021 

.42 

b 

.32 

.08 

0.58 

.11 

.62 

186.0/Vc 

b 

.29 
1 

.14 

z 2 380  m: 1 .O 
z <  152  m:1.3 

b 

21 
z 2 4 7 7  m:1.0 
z < 152 m:1.3 I b  z 2 250 m:1.0 ~ 

z < 117 m:2.0 

b b .2 1 2 ,  .2 

.2 

.5 

8 .O 

.2 ! b l  

.5 ! .3 3 .3 3 

i I 

I 

b 

.33 

b 

b 

Director bar 
smoothing 

I 

.33 

Control-feedback 
washout I 

2.0 ! 8.0 2.0 b 
I 

'Units of  director  bar  deflection  are  quoted in degrees of displayed pitch scale - 1 deg = 0.3175 cm. 
bNot applicable. 

V KTS CAS. 
dl   deghT=  1 .38%rpm. 
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A typical  deceleration is illustrated  in  figure 20. 
In  the  portion of the envelope  above  line BC, the 
pilot  can select a  reference  velocity for terminal-area 
penetration  and  initial  path  acquisition  through 
manual  airspeed  select actions  at  the flight director 
mode select panel (fig. 11). An initial airspeed  of 
140 knots is used  for this  example.  At  an  appro- 
priate  point  on the  approach  profde  where  he  chooses 
to begin  deceleration  (nominally  designated  as 
way  point 2 in fig. l), the  pilot  relinquishes  direct 
control  of  the speed  reference to the flight  director, 
and  thereafter  indirectly exercises control of the 
reference  by  means of successive  flap deployments 
toward  the preselected  landing  configuration.  This 
is done  by  the single-action  selection of  the  Full  Auto 
button  on  the  mode select panel  causing the reference 
speed to slew at an appropriate  rate  (along AB in 
fig. 20) onto  the deceleration  schedule BC, where it 
holds  pending flap deployment. In the case illus- 
trated, flaps are  progressively deployed  at  the pilot’s 
discretion to an approach  setting  of 50” prior to 
commencing  descent. 

The  rate  at  which  the  velocity  reference is allowed 
to  decrease in response to  the initial  deceleration to  
the scheduled boundary  and  subsequently in response 
to  the increasing flap angle is restricted  through  a 
variable  rate limit.  This  “deceleration  reference” is 
designed to  match  the  inherent  deceleration  charac- 
teristics  associated  with  progressive  configuration 
changes; it has the desirable effect  of  minimizing  the 
amount of  closed-loop  control  required  to follow 
the slewing  velocity  reference. The  slew-rate  control 
employed was based  on the  control  blending  coeffi- 
cient C 3 ,  which is defined in the  next  section. This 
had  the  effect  of  limiting  the  maximum  deceleration 
to -0.6 (C3 + 1) knots per  sec,  where C, assumes 
values  between 0 and 1 ,  depending  on  configuration. 
This conservative  deceleration limit of 0.03 g in the 
full powered-lift  configuration  serves  also to preserve 
both speed-control  authority  and  maximum  down- 
ward  flightpath  angle  capability  as  may  be  needed  for 
satisfactory  closed-loop  control  in  the presence  of 
atmospheric  disturbances  or  maneuvering  errors. 

During  glide-slope capture,  the  thrust  vectoring 
associated  with  nozzle deployment  from 6” to  
typically 80” results in substantial changes - of the 
order of 0.1 to  0.15 g - in  propulsive lift  and  drag 
forces. To assist the  coordination of the pitchover 
that is also  required  duling  this  maneuver,  a  5-knot 
speed  reduction at  a  rate  corresponding  to one-half 
that  just  described is implemented (line CD in 
fig. 20). The  decision of  the  pilot  to  deploy  the 

nozzles  as the aircraft  intercepts  the glide  slope is 
signaled to the system  by his selection of the Glide 
slope  Manual button  on his mode  select  panel 
(fig. 11). If the backside or frontside  speed-control 
SAS is to be  employed,  and if it  has  been previously 
armed,  that is, if  the servos  have  been  engaged, then 
this  action will also cause the nozzles to  deploy  to 
a  midrange  setting  prior to  the control  loops  auto- 
matically  closing to effect  speed  control.  Since 
the safe  specification  of  the final landing  speed is 
predicated on  the nozzles  having  been deployed, 
this direct  pilot  method  of signaling the system  serves 
as a  safeguard to ensure that nozzle  deployment  has 
indeed  taken  place, allowing the speed  schedule to 
shift to  the lower  descent  and  landing  airspeeds. A 
more  detailed  description  of the  philosophy, flight 
director  programming,  and  procedures  employed 
during  glide-slope capture is contained in a  later 
section on pilot  comments. 

The  initial  portion of the  descent is flown  at 
point D i n  the  illustration  until flaps are set to  the 
final landing  setting  of 65”, perhaps  halfway  around 
the final turn, as suggested  in the pilot’s approach 
profile chart. Five  degrees  prior to  the flaps  reaching 
their final setting,  the velocity  reference is allowed, 
subject to  the  rate  limit, to fall away  from the 
descent  schedule into  the landing  speed  range, 
finally  reaching  a  value  appropriate to  landing weight 
(point E in fig. 20). 

Prior t o  entering  the  terminal  area,  the  pilot will 
have entered  both  the  estimated  landing  weight  and 
the  selected  landing flap  configuration into  the 
flight director  computer. A longer  runway  or a 
“guaranteed”  strong  headwind might  result  in  the 
choice of a  landing flap configuration of 40”, for 
example, in which  case the  initial  descending 
approach  might be  carried  out  with flaps at 30”. The 
airspeeds corresponding  to  the range of  configura- 
tions available to the  pilot  are  shown  in  figure 20. 
This  feature allows  for steep  approaches  even  at  high 
airspeeds,  without  encountering  unacceptably  low 
power settings, since in the  test  aircraft  the nozzles 
can still be  used independently  to  adjust  the  trim 
approach  drag, even for reduced flap settings. 

Control  Blending Coefficients 

Figure 21 illustrates  how  the  control usage was 
blended  according to  changing  aircraft  configuration 
during  conversion to powered  lift. In the case of 
the normalized  throttle  coefficients C, and C,,  

33 



PATH  CONTROL SPEED CONTROL 
GAIN  TO  PITCH GAIN  TO  PITCH 

DIRECTOR DIRECTOR 

GAIN  TO  THROTTLE 
DIRECTOR 

PATH  CONTROL 
GAIN  TO  THROTTLE 
DIRECTOR B $ 

// 
/ FLAP ANGLE, deg 4 \\ 15 30 45 60 
5 I I I I \ 

Figure 21. - Control  blending  coefficients. 

these control effectiveness  gains  relate to  the  throttle 
control derivatives X h T ,  Zh T ,  reflecting  the changing 

orientation of the  incremental  thrust  vector as flap 
and nozzle  are deployed  toward full powered-lift 
settings.  For  example,  when X6 dominates over 

Z6T,  as  is the case in  conventional  flight,  the  speed- 

control gain to  throttle C3 is correspondingly large. 
The crossover in pitch  effectiveness is less directly 
related to  the changing  propulsion  system  aero- 
dynamics,  reflecting  instead  an  appropriate  and 
necessary  blending toward  the  backside  control 
technique as the  only  means,  in  the  absence of 
independent  longitudinal  force  modulation,  of 
satisfactorily  controlling  airspeed.  Nevertheless,  this 
requirement is fundamentally  brought  about  by  the 
progressively more  destabilizing  influence  of  ever- 
increasing  induced  drag as powered  lift is developed. 
This  blending  of control  effectiveness is employed 
for  nulling  longitudinal  path  and  airspeed  errors, 
except  when  either version of  the  automatic  speed- 
control SAS is used during  steep  descent, as  discussed 
below. 

T 
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Guidance and Control Feedback Laws 

The  control  blending  coefficients  are used to 
govern the mixing of  path  and speed errors  in  the 
multiloop  guidance laws  driving the  pitch  and  throttle 
director  bars,  as  illustrated  in figures 22 and 23. The 
pitch  and  throttle flight directors  are  configured  in 
the single blended  mode  indicated  for  the basic  air- 
craft unless on steep  descent, where the  configuration 
then  conforms to whichever  STOL control  concept 
has  been  selected  for  evaluation;  basic  aircraft,  back- 
side speed-control SAS, or  frontside  speed-control 
SAS. The gains employed  in  the  different  modes 
are  summarized  in  table 3 and  were  developed 
empirically in a  fixed-base  simulator as an extension 
of a previously  existing automatic  control  system. 
The  gains and  structure  differ  somewhat  from  those 
suggested in reference 16, which  were determined 
separately  according to an  analytical  procedure 
embodying  manual  control  theory  for  the  research 
effort  reported  in  reference 11. (Although  these 
control laws  provided the guidance that was required 
for  this  investigation,  more  detailed  study  and  devel- 
opment of the  control laws  employed  during the 
steep  approach were  carried  out  subsequent to  the 
main flight program.  This  resulted  in  preferred 
control  laws,  the  details  of which  along with  limited 
flight-test  results  are  contained  in  the  appendix.) 
Displayed  element sensitivities for  the  director  bars 
are quoted  in  table 3 in degrees  of  bar  displacement 
relative to  the underlying  pitch scale. The “Lag” 
and  “Wash” functions  shown  in figures 22 and 23 
represent  simple  first-order  smoothing  and  washout 
signal processing  implemented  by  difference  equation 
algorithms. The  washouts on the  control  position 
feedbacks  are  necessary to  eliminate standoffs  in 
the outer-loop  path  or  speed-error  parameters, 
achieving the same  effect as a  forward-loop  integrator 
that  would  be  employed  in an automatic  control 
loop.  The  path-tracking gains  for  the throttle  and 
pitch flight directors,  when used in  support  of  the 
basic aircraft  or  backside SAS, or  the  frontside SAS 
modes,  respectively,  were  scheduled  with  altitude 
as shown  in  table 3 in an attempt  (later proved 
ineffective  and  detrimental to stability) to  obtain 
unproved tracking  performance  approaching  decision 
height. Not  shown in the figures  are anticipation 
features, based on the  current along-track ground- 
speed estimate,  that provide  appropriate  lead 
for  impending changes  in  lateral or vertical path 
segments. 
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In the basic  aircraft  mode,  which is used  through- 
out  for  the level approach  and  initial  deceleration 
segment,  and  during  descent (if neither version of 
the speed-control SAS is selected),  a  feed-forward  of 
nozzle  angle into  the  pitch  director is used to assist 
the pilot's coordination  of  pitch  attitude necessary to 
maintain  speed  during  minor  adjustments  of  nozzle 
trim on descent.  This  feature  also  provides  an  appro- 
priate crossfeed to  pitch  during glide-slope captures 
(and  go-around),  during  which the  path-error signal 
is temporarily  suppressed  while  the new  aircraft 
configuration is established. In the glide-slope capture 
case, the new configuration  consists  of  nozzle  deploy- 
ment  through  typically 80°, for  which  a  smoothly 
coordinated  trim  pitch change of  about -6" is simul- 
taneously  required  for  satisfactory  speed  control. 
Greater  detail on the  programming  incorporated  for 
the glide-slope capture  maneuver is contained  in  a 
subsequent  section  describing  pilot  procedures. 

In the case of  the  throttle  director,  a  combination 
of throttle  position  and  engine  rpm is used to provide 
the  control  position  feedback signal. This  contributes 
toward  maximum  bandwidth of control  in  the pres- 
ence  of  significant  engine  response lags, and also 
overcomes the  effects  of  a  hysteresis  existing  in  the 
linkage  between the  throttle lever handle  and  the 
engine fuel control  unit. - 

In both  throttle  and  pitch  director laws,  special 
care is  given to  appropriate  limiting  of  the  command 
signals. For  throttle, reliable limiting  of  commanded 
throttle changes within  the  acceptable  propulsion 
system  operating range  provides the  pilot  with  the 
assurance that  he  may  follow  the flight director 
commands  without  separately  monitoring the engine 
instruments.  Similarly,  reductions  in  throttle  below 
levels that would result in  excessive  angles of  attack 
are  prevented  by  a  configuration-dependent  minimum 
thrust  limit, likewise  reducing the  requirement  for 
separate  monitoring. 

Limiting  the  commanded  control  correction  in  the 
pitch  director to within k.5" relative to  the aircraft 
symbol  serves the  conventional  purpose of maintain- 
ing the  director  bar  within view for all modes  of use 
of the  pitch  director.  For  the  frontside  speed-control 
SAS mode  an  additional  limiting  of  the  pitch 
command to  a range k5" from  the  computed 
approach  trim-pitch angle was incorporated  to 
recognize the  limited  (but  still  substantial)  authority 
of  this  control  system. In addition,  it was desired to 
conform  somewhat  with  the  tentative +4" criteria 
proposed  in  reference 4 prescribing  path  control 
authority  requirements  thought  acceptable  for 

steep-angle operations  in  rough air. The  21 5" limiting 
of  the  absolute  pitch  angle, used for  the basic aircraft 
mode  pitch  director, serves to preclude  excessive 
attitudes  during  climbout. 

The flight director  control  and  feedback laws just 
described  were  used  in the course  of  collecting the 
performance,  control  and  pilot  opinion  data  pre- 
sented  subsequently  in  the  body  of this report. 
However, during  the  fight  evaluation  of  these  control 
and  feedback laws, certain deficiencies  became 
apparent  that  could  not  be  remedied  within  the 
time  constraints  of  the flight program. A subsequent 
effort to rectify  these  deficiencies,  which  resulted  in 
significantly  improved  control laws for  the glide- 
slope  tracking  segment  of  the  approach  profde, is 
reported  in  the  appendix. 

Trim Management 

The  continuously.changing  and generally uncertain 
nature of the  ambient  mean wind  field,  because  of 
its  significant  effect on control  authorities  and 
safety margins, may  be  a  source  of  major  additional 
workload to  the  pilot  of a  powered-lift  aircraft on a 
steep curved approach.  The  flight  director was 
designed to  provide the  pilot  with  a  cue  from  stored 
trim  data  for  positioning  the  third  auxiliary  or 
redundant  control so as to  maintain  satisfactory 
authority  and  safety margins  associated  with  the 
active  utilization  of the  other  two  controls. In addi- 
tion to this  stored  knowledge of aircraft  characteris- 
tics, the  key  computational  feature  of  the  director  in 
assisting the  pilot  with  this  control  function is its 
on-line  estimate  of  along-track  groundspeed,  and 
hence  aerodynamic  flightpath  angle,  obtained  from 
the  navigation  fdters. 

The  trim  nozzle  data used to  support  the basic 
aircraft  mode are shown  in figure 24;  they apply 
satisfactorily to  all approach  and  landing  flap angles 
because of  the relative independence  of  hot-thrust 
vectoring  from the high-lift aerodynamics  in all 
practical  approach  configurations.  Since  ample 
safety m&jn exists at  the higher  speeds correspond- 
ing to  the  approach  descent  schedule  shown  in 
figure 20,  there is no need to  direct an increase  in 
nozzle  angle in tailwind  conditions,  for  the  conse- 
quently  lower  power  setting is easily tolerated.  The 
directed  reduction  in  nozzle angle in  headwind 
conditions is required on both  approach  and  landing 
schedules,  however, in order t o  prevent  excessive 
thrust  settings.  Any  difference  between  the  system- 
determined  trim  setting  and  the  current  nozzle 
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Figure 24.- Trim  nozzle  calculation. 

setting is presented to  the  pilot via the  central 
nozzle  director  window  on the EADI, shown in 
figure 16, hence  prompting an incremental 
correction. 

Determining the trim  settings  for  the  backside  and 
frontside  speed-control  SAS  modes is more complex. 
Data  are stored  for  a range  of  weights  and aero- 
dynamic  flightpath  angles  for  each  approach  and 
landing flap setting,  and  table  look-up  and  interpola- 
tion  are  used to  provide a continuous  computation 
of trim  pitch  and  power  setting as flap is deployed 
on descent.  The  calculation  changes to  separate 
data  appropriate to  the final  landing  speed 5" before 
the prespecified  landing flap setting has  been 
achieved.  Figure 25 presents the approach  and 
landing  trim  data  for  flaps  at 50" and  a  weight 
of 191 kN (43,000 lb). A further  correction  of 
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Figure 25.- Trim  pitch  and  rpm  tabulation. 

+1.5% rpm  increment is universally incorporated 
for  the  frontside  mode  where  chokes  are  employed 
in  order to furnish  the  offsetting  lift  requirements 
not allowed for  in  the  stored trim data.  In  the  back- 
side mode,  trim  direction is displayed by  the  pitch- 
flight  director  bar as indicated  in figures 22 and 16; 
the  throttle  director  bar is used for  presentation  of 
required changes to  trim  throttle  in  the  frontside 
mode.  The  stored  trim  data are  calculated  on  the 
basis of  the  nozzle  trim curve of figure 24, and, 
under ideal conditions,  establishing the  directed 
trim  position  for the  third  auxiliary  control will also 
result  in  nominal  positioning  of the  other  two  con- 
trols.  Supporting  these  automatic  speed  control 
modes is the  presentation  of  current averaged  rpm in 
the  central EADI  display  window  in  place  of  the 
nozzle  angle  director  which is not applicable to  these 
configurations. 

The  trim  management  feature of the  director is 
also  used during glide-slope capture,  where  the 
philosophy  employed was to first establish  the  trim 
aircraft  configuration  appropriate to  the new  aero- 
dynamic  flightpath  angle,  and gradually  resume 
closed-loop  path  tracking  thereafter.  The  procedure 
involved the use of  three  controls  by  the  pilot: first a 
computed  trim  throttle was set  at  the  beginning of 
the  capture  maneuver,  then  the nozzles  were 
manually  deployed to  their  computed  trim  position, 
while the  pilot also  followed  the  nozzle-to-pitch 
crossfeed director  to an appropriate  trim  pitch 
attitude.  After  the  aircraft was established  close to 
the desired  glidepath  using  this  procedure,  the  path- 
tracking  loops  would gradually take  over,  and  the 
pilot  could select either  mode of the  speedcontrol 
SAS,  if  desired. An alternative  capture  mode  was  also 
tested  for  the  speed SAS  modes  that  would  provide 
automatic  nozzle  deployment  at  a  suitable  rate  to  the 
initial  trim  position,  prior to  smoothly establishing 
closed-loop  velocity  control. 

V. FLIGHT TEST RESULTS AND DISCUSSION 

Test Conditions  and  Procedures 

The  data  reported  here  were  obtained  from 
approximately 60 approaches  carried out in the 
test  aircraft.  The  test  site was the Crows  Landing 
Naval  Air Facility,  California,  where  a  STOLport 
defined  according to  the specifications of FAA 
Advisory  Circular 150/5300-8 had  been  established 

37 



on  one  of  the CTOL  runways.  The  runway  environ- 
ment and definition of navigation  coordinates are 
shown  in figure 26.  Detailed  documentation  of  the 
specific  geometry and relative  accuracies of  the 
navigation facilities is contained  in  reference  17. 
Three  research  pilots, each  with  broad  experience 
in low-speed  handling-qualities  programs,  evaluated 
the  three available STOL  control-director  concepts 
by  flying  hooded  approaches to a  decision  height  of 
30.54 m  (100  ft).  Each  approach was completed  by 
a  final visual segment  during  which the pilot's objec- 
tive was to  accomplish the  best possible touchdown 
within  the prescribed touchdown  zone, also  removing 
lateral  offsets  as  may  exist at  breakout.  The  touch- 
and-go  landing  was  followed  by  a  climbing  turn to  
intercept  the  profile  for  another  approach.  During 
any  single flight the  pilot generally  evaluated  only 
one  control-director  configuration; as many as 
6  evaluation  approaches  were  possible  in the course 
of  a 40-min flight. The  pilots were  provided  with  an 
approach  profile  chart,  shown  in figure 27,  to assist 
with  preflight  briefings. 

3 GLIDESLOPE // 

f 
30.5 
rn 

(100 ft) 

Figure  26. - Crows  Landing  Test  Facility, STOL runway 
and  coordinate  system. 

The  decelerating  curved-approach  task was recog- 
nized  as  a two-pilot  operation.  The  copilot  deployed 
flaps  at  the pilot's command;  monitored  the flight 
director,  approach progress,  aircraft  systems, and 
the  aircraft  trim  state relative to  changing  winds 
during  the  approach;  and  performed usual com- 
munications  tasks.  In  addition,  the  copilot  made  the 
required  computer  entries, using the  keyboard 
shown  in figure 14,  specifying  the  landing  flap 
configuration,  estimated  landing weight, as well as 
which of the  three  STOL  control  and  flight-director 
concepts was to be  evaluated. 

A moderate range of wind conditions was 
encountered  during  the  course  of  the  flight-test 
program;  however,  turbulence  was  consistently 
light or negligible. It was  a  general  objective during 
all flights to  increase  pilot  awareness  of  potential 
control  difficulties  that  might  be  caused  by  winds. 
For  example,  in  order t o  operationally  deal  with 
the varying  wind  conditions,  four  reference  approach 
trajectories  were  available to the  pilot.  They  offered 
a  choice  of  rollout  altitude  at  the final straight 
approach  segment  of  either 152 m (500 ft) or 213 m 
(700  ft)  and  a  choice  of  turn  radius  of  either  762  m 
(2500  ft) or 914 m (3000 ft). Information  about 
probable  winds  during  approach was furnished to  
the pilot during  preflight  briefings.  The wind data 
were obtained  by  weather  balloons  launched  from  the 
STOLport. In addition, an  on-line  readout of esti- 
mated  wind  in  runway  coordinates  obtained  from  the 
on-board  navigation  and air data systems was dis- 
played  for  pilot  reference on  the MFD cockpit 
display.  These  sources  augmented  the  reports of sur- 
face  winds at  the  STOLport  and  together  simulated 
the  probable availability of comprehensive  wind 
information to  support  future commercial STOL 
operations. 

Twenty-two  approaches were  carried out  in 
moderate  wind  conditions,  that is, in winds  ranging 
from 15 to  20 knots  on final approach. In nearly all 
of  these  cases, the wind  directions a t  turn  altitudes 
were  unfavorable to the  left-hand descending turn, 
steepening  the  descent  at  initial  turn roll-in and 
tending to  drift  the  aircraft  outside  of  the  turn  and 
across the  localizer at  rollout. All of these  approaches 
utilized the  wider  turn  radius  in  order to  reduce 
these  effects. In addition, 10 approaches  were  flown 
in these  stronger  wind  conditions  using  an  approach 
flap setting of 40" for  the  initial  descent  and  a  flap 
setting of 50"  for  landing.  The  nominal  configuration 
used for all other  approaches used approach  and 
landing  flap  settings  of 50" and 65', respectively. 
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Figure 27. - Pilot’s approach  profile  chart. 

Data Measurement  Pllilosoplly and Organization 

The  unusually  comprehensive  nature  of  this 
investigation makes available a wide range of  data 
which are likely to  be  of  interest t o  a variety of 
individual  disciplines.  Figure 28 defines  the  outer- 
and  inner-loop  performance  and  control  quantities 
and navigation system  errors  that  are  the  subject 
of  this  section.  Outer-loop  performance  measures 
describe  the  net  profile  performance achieved by the 
system  based on  its cjwn position  estimates  obtained 
from  the navigation filters.  Presented as lateral  and 
vertical  position errors  from  the desired approach 
profile,  these  parameters  are also referred to  as 

guidance errors or flight  technical  errors;  they  reflect 
all sources of system  error exclusive of navigation 
errors.  Generally,  these  guidance  errors  are  the  same 
errors  that  are  displayed to  the pilot via the EADI 
tracking  box,  the  aircraft  position  symbol  on  the 
MFD, and his  electromechanical HSI. As shown  in 
figure 28, navigation errors  are  defined as the dif- 
ference  between  the  estimated  position  of  the air- 
craft (as determined  in  flight  by  processing navaid 
signals  in the navigation filters) and  the  actual posi- 
tion (as measured by a ground-based  tracking  radar). 
These  data  describe  the  accuracy  and  qualities of the 
basic navigational facilities and  environment, reflect- 
ing as well the design characteristics  of the navigation 
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filters. The  inner-loop  quantities  shown  in  figure 28 
describe the  action  of  the  pilot  and  the use of  con- 
trols to  achieve the  outer-loop profile perfomlance 
measures. While the flight director  tracking  errors 
and associated pilot  control  inputs  provide  measures 
perhaps  pertaining t o  pilot workload,  the  control 
utilization  data  furnish  information on  the m o u n t  
of  control  needed t o  achieve the measured profile 
perfornlance. When interpreted in conjunction  with 
the  aircraft  aerodynamic  and  control  characteristics 
shown  in figures 5 and 6 and  with  other  information 
available in  references 2 and 7, these  data  can be 
reduced to more general approxinlations  of  control 
power  requirements,  should  such  be desired for 
design purposes. 

For  purposes ofdata analysis and  presentation,  the 
approach task was subdivided into level-downwind, 
descending-turn.  and  final-straight  approach seg- 
ments.  For  each  segment  the  parameter class mea- 
sures  just discussed are  presented.  There is a further 
subdivision,  where  appropriate,  of  data  according 
to  the  three  STOL  control  concepts  during  the 
descending  segments. Also presented  in  this  section 

are  data related to  performance  criteria  and  control 
utilization  at decision height  and  during  the  landing 
maneuver.  The reader may  choose  to  focus  on  only 
those  data of interest to him in  this  section. 

The  minor  variations in the  four available 
approach profiles previously described did  not  pro- 
duce  any significant  differences in perfomlance 
data, so that all profiles contributed to the aggregate 
data base. Data from  approach profiles havinghigher 
rollout  altitudes, which were flown early in the  pro- 
gram during  the  course  of navigation filter  develop- 
ments,  contributed  to  control  and  handling  data 
bases, but  not  to  the navigation and  guidance  data 
aggregates. 

Consistent  with  the  task-oriented  emphasis  of 
this  work,  this  breakdown  by  approach  segment 
provides  the general fralnework  for the presentation 
of  system  performance  data to follow.  Pilot  com- 
ments,  pilot  opinion  data,  and discussion of  the 
data  from  the  points  of view of handling  qualities 
and pilot  workload  considerations  are reserved for 
a following  section. 
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Figure 28.- Data measurement  philosophy 
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Level-Downwind Segment 

Net profile perfofomlance- Figure 29 illustrates 
in a macroscopic sense the  net  profile  performance 
realized for  approaches flown along  one  of  the  four 
available  reference approach  paths. The data  were 
obtained from measurements  by a ground  tracking 
radar  referred to  the  same  coordinate  system  shown 
in figure 26. The  net  error  from  the desired profile 
accomplished by  the  system is a combination  of 
navigation and  guidance  errors.  The  source of naviga- 
tion  errors  during the  downwind  seapent  has  been 
discussed in an  earlier section;  the  guidance  errors 
reflect  pilotage,  the  suitability  of  the  guidance 
control  laws,  and,  to a large extent,  the details  of 
how  the pilot  chose to  initially  intercept  the  pro- 
fie.  These  constituents  of  the  net  crosstrack  error 
for  the  same  approaches  as  represented  in figure 29 
are  illustrated in  figure 30. The  day-to-day  variations 
in  TACAN navigation quality,  which  are  evident  in 
the  upper  chart of figure 30, are  seen to  be  reflected 
in the guidance  errors;  this is particularly so during 
large transients,  such as changeover t o  MODILS 
navigation during  the  turn.  The  effect  of  these 
external navaid disturbances  and  error  sources on 
the  dynamic  system  performance is a subject  for 
separate  study. Although  occasionally  apparent to  
the  pilot, navaid error  phenomena  did not affect 
the  approach  task to  any significant degree during 
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Figure 29.- Envelope of  approach  performance, 
flightpath 2 .  

this  primarily  handling-qualities  oriented  flight 
investigation. 

Despite the  nonstochastic  nature  of  these  errors, 
an  indication  of  the  crosstrack  performance likely 
to  be achievable in an  environment similar to  that 
of this  investigation is represented by  the probability 
density  functions  of figure 31. These  histograms 
simply  represent  normalized  tabulations of cross- 
track navigation and  guidance  errors  that fall within 
discrete  error  bands  during  the  downwind  segment 
for all flightpaths between way  points 2 and 4, as 
illustrated in the  lower  chart  of figure 30. Also 
interpreted as the  percentage  of  samples (or time) 
among all approaches  that  errors fell in  certain 
ranges,  this foml  of  data  presentation is used exten- 
sively in  this  report. 

Level deceleration and corwersiorl to powered 
lift- Of  greater  interest  during  the  downwind seg- 
ment  are  considerations  associated  with  longitudinal 
control  of  the aircraft. A typical  set of  time  histories 
describing the deceleration  from 140 knots to  the 
initial  approach  speed  of 90 knots is shown  in 
figure 32. The  modest levels of  pitch-  and  throttle- 
control  activity  required while effecting  the  con- 
version to  powered lift  represent  the  low  pilot  work- 
load involved in this  maneuver,  particularly  during 
this  early  segment  of  the  approach where except 
for  the desire t o  delay  deceleration  as  long  as  possible 
to  conserve  fuel,  the  performance  requirements  are 
relatively unconstrained. 

The  reader  should  note  the  characteristics  of  the 
inner-loop  parameters - flight-director  errors,  pitch- 
control  input  activity levels, and  frequencies - for 
later  comparison  with similar data  during  the final 
stages of  the  approach.  It  should  be recalled that 
the  maximum  blending of the  multiloop flight 
director  occurs  during  this  segment  when flaps  are 
generally deployed to  SO". This  blending requires 
both  pitch  and  throttle  controls  to  be used to null 
any  speed or path  error;  however, no problems in 
managing the  two  controls  at  roughly  the  same 
frequency  requirements  are  evident. 

The aggregate of  pertinent  longitudinal  perfor- 
mance  and  control  utilization  measures  during  this 
segment  of  the  approach  task  are  shown  statistically 
in  the  form  of  probability  density  functions  in 
figure 33. This  means of  data  presentation has been 
chosen to  more graphically illustrate the  amplitude 
distribution  characteristics  of the  performance  and 
control  parameters  of  interest;  representative  time 
histories  are  presented as before t o  illustrate  the 
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Figure 30.- Typical  crosstrack navigation and  guidance  errors. 

frequency  characteristics of the  data.  These  tabula- 
tions  are  not necessarily meant to  imply  statistical 
significance, so that  sample  means  and variances are 
generally not  emphasized  except in  cases where 
meaningful comparisons can be made. However, the 
shape  and  breadth  of these  histograms  provide  useful 
quantitative  data on the relative amplitude  and 
frequency of occurrence of the variables of interest. 
The  histograms  of  fli@t-director  tracking  errors 
shown  in figure 33 can be  interpreted as a  direct 
measure of pilot performance in a compensatory 
(error  nulling)  tracking task, where director  bar 
widths in the case of the pitch  director,  and degrees 
of  throttle  director  displacement measured against 
the background attitude scale  are  typical and  directly 
calibrated  measures  that  the  pilot  can use to judge his 
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Figure 31 .- Crosstrack navigation and  guidance  errors 
during level downwind  segment [data from 34 
approaches). 
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own  performance.  Alternatively,  the  director  tracking 
errors also reflect, via the  flight-director gains 
(table 3), the  outer-loop  tracking  errors, or errors 
in  control  positions necessary for good outer-loop 
control. 

Descending Turn Segment 

Profile performance measures- Navigation and 
guidance  errors  during this segment  are  presented  in 
figures 30 and 34. The  horizontal  discontinuities 
associated  with the  transition  into  the MODILS 
zone are encountered  during  this  segment,  making 
the probability  density  function of  figure 34 more a 
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Figure 33.-  Amplitude  distributions of  longitudinal 
performance  and  control  parameters  during level 
downwind  deceleration  segment  (data  from 34 
approaches). 

tabulation of errors  encountered,  rather  than suggest- 
ing  any  particular  statistical  significance. It is 
generally true  that  crosstrack navigation errors of 
sizes represented  by  the  extremities  of  the  histogram 
have their  source  while still in the TACAN  region. 
They are  presented to  the system  for  elimination 
during  this  segment  once  transition  to MODILS 
guidance is accomplished. 

The  magnitude of  the  navigation  transient  injected 
as a  result of the change in navaid source  from 
TACAN to MODILS is better  indicated  in figure 35. 
The figure  summarizes the across- and  along-track 
navigation errors  existing  at the  on-board navigation 
filters,  transformed to  R-NAV track  coordinates,  at 
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the  time  just  prior to  navaid  switching.  (Switching 
was generally  implemented  manually  by  the  copilot 
at  a  position  halfway  around  the  turn,  although  under 
operational  circumstances,  automatic  switching 
would  be  used.)  The  sources  of  these  errors  are 
primarily the transmission-reception  characteristics 
of the TACAN DME and  bearing  information that 
can vary daily  and  with different  units or adjust- 
ments of ground  or flight equipment.  The  geometry 
of the navigation  environment is such  that  the cross- 
track  error  at  the  point of switching is largely a 
result of TACAN distance  measurement  errors, 
while the  along-track  error is mostly  a  result  of 
bearing  errors.  Neglecting  additional  errors  arising 

from  the  complementing  function  of  the  on-board 
inertial  sensors,  and  assuming  relatively  error-free 
MODILS navigation  data,  this figure  suggests two 
of the  three  dimensions  of  the  probable  TACAN-to- 
MODILS  delivery  zone.  The  effects  of  a  typical  trans- 
ition  are  represented  by the  pertinent  lateral  time 
histories  of  figure 36, illustrating the  controlled 
navigation f i ter  transients  in both runway  and 
track  coordinates,  and  their  effect on the guidance 
and  control  parameters.  The  lateral  control  correc- 
tion required to  remove the TACAN error is without 
the larger transient  which would  otherwise  exist 
had  the  position  transient  been allowed to  propagate 
through  the navigation  filters  affecting the velocity 
damping  term. 

Roll control  during turn- The  utilization  of 
roll angle during  the  turn is presented  in  figure 37, 
comparing on  the same  axes the  actual  and  com- 
manded roll angle  used to  achieve the  crosstrack 
performance  typified  by  figure 34. Also shown  for 
purposes  of  later  comparison  are  amplitude  distri- 
bution  data  describing  flight-director following  and 
the pilot's roll-control  input  characteristics.  The  data 
contain  the  effect  of  selecting an approach  profile 
of lesser or  greater turn radius  for  the wind  condi- 
tions  of  the  day  and  the  approach  speed  employed 
in  order to  maintain the  nominal  turning  bank angle 
nearer to  15". 

Longitudinal  control data and final deceleration- 
Typical  time  histories  of  longitudinal  control  param- 
eters are shown  in figure 38 for  the  three  STOL 
control  concepts  that were  investigated.  The final 
deceleration  from  approach to  landing  speed was 
usually  accomplished  during  this  segment  by  deploy- 
ing the final landing flap as illustrated.  Additionally, 
moderate  winds  during  the  approach would  require 
small  trim adjustments  of  the  third auxiliary control 
as  the  turn progressed,  which  were  in addition  to 
those  appropriate to  assuming the final landing  flap 
and  speed  configuration.  The final straight  approach 
segments  included  in this figure  are  discussed  later. 

Pertinent aggregates of longitudinal  control  data 
in the  form  of  probability  density  functions are 
shown  in figure 39.  The relative contributions of 
the  velocity  error  (from  the  reference  speed)  and 
glidepath  error  performance  measures  for  each of 
the  three  STOL  control  concepts evaluated  are 
illustrated  in  the  cumulative aggregates. No such 
breakdown is included  for  the  flight-director  tracking 
measures,  however,  since  these  considerations will 
be addressed in  the following  section. 
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Figure 38 .- Time  histories  of  longitudinal  parameters  during  turn  and  final  straight  segment. 

Final  Approach Segment to Decision  Height 

General- The final straight-approach segment 
following turn  rollout  provides the best  opportunity 
to  evaluate  factors  relating to  the  three  STOL  control 
concepts  that were studied  during  this  investigation. 
Interest is concentrated in the final 30  sec,  approx- 
imately  122  m (400 ft)  prior t o  reaching  decision 
height,  since  any  larger  errors  resulting  from  turn 
rollout  and final deceleration  have  generally  been 
corrected  by  this stage of  the final segment. 

Operationally,  transition  from  instrument  to 
visual flight conditions can occur  any  time  prior  to 
the  nominal 30.5-m (100-ft)  decision  height  chosen 
for  this  investigation.  Consequently,  some  considera- 
tion is given in  the  data  presented to performance 

measures that are  averaged  over the  two 30.5-m 
(100-ft)  altitude  intervals  prior to  reaching  decision 
height, as possibly  providing  a  more  representative 
indication of system  performance  than  the  instan- 
taneous  measures  occurring  at  breakout.  The  latter 
are  also  reported. 

Navigation errors- The navigation  quality of  the 
MODILS guidance  aid  used in this  experiment is 
illustrated  in  figure 40 for  the  two  30.5-m  (100-ft) 
altitude  intervals  just  prior to decision  height. 
Although the vertical  navigation was  of consistent 
quality  over 13 flights and 61 approaches  represented 
by  the  data,  the  lateral navigation  occasionally 
showed  daily  variations in azimuth  alignment in a 
direction  that  typically placed the aircraft to  the  right 
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Figure 38.- Continued. 

of its  estimated  position.  Lateral navigation was 
further  degraded  by  the  1.22-m  (4-ft)  resolution used 
in  the lateral navigation filter  shown  in figure 12, 
which  provided the  error signal for localizer  tracking. 
Despite high complementary  filter gains prevailing 
in this  region,  it is considered  that  the  poorer-than- 
desired lateral  performance  achieved  during  this 
segment  can  be  partially  attributed t o  this  coarseness. 

While the  amplitude  distribution  functions  of 
figure 40 provide averaged measures  of navigation 
quality in  the  two 30.5-m (100-ft)  altitude  intervals 
above  decision  height, the  actual  combinations  of 
vertical and lateral  navigation  errors  existing at  the 
decision range plane  (the  range  corresponding to  the 

decision height  of 30.5 m (100 ft)  when precisely on 
glidepath)  are  shown  in figure 41. 

These  data  summarize  only  some  of  the  pertinent 
navigation qualities  of the MODILS guidance aid 
used  in  this  investigation. It was not  an objective t o  
document  in  detail  the  performance  of  this  system; 
further  details  of  the  system  are given in  reference 17. 

Performame and control data- Consistent  with 
the  navigation  data  just  presented,  the  corresponding 
glidepath  and  localizer  guidance  errors  in  the  altitude 
segments 91.5 to  61 m (300 to 200 ft)  and 61 to 
30.5 m (200 t o  100 ft)  are shown in figure 42 for all 
three STOL control  concepts  combined.  The  actual 
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combinations of  vertical and  lateral  guidance  errors 
existing at  the decision  altitude  of  30.5 m (100 ft) 
are  shown  in  figure 43. The  left-of-center  bias  which 
is apparent  in  the  lateral  data arises as a  result  of 
persisting  small vertical gyro  bias  errors  generated 
during  the final turn  during  which  the roll-angle 
erection  feature  has  been  automatically  disabled. 
The  flight-director  gains  are  such in this  altitude 
region to cause  a  4.8-m (16-ft)  lateral  standoff  for  a 
1" roll-angle error. These data will be  discussed 
further  in  a  subsequent  section which  considers 
issues  associated  with breakout  and  landing. 

A comprehensive set  of  time  histories of the 
pertinent  longitudinal  performance  and  control  data 
for  the  three STOL control  concepts  evaluated is 

shown  for  typical  approaches  in  figure 38. The 
purpose  of  this figure is t o  illustrate the basic nature 
of the  different  control  concepts, whose  performance 
and  control aggregates are  next  summarized as 
probability  density  functions.  The  reader will note 
the oscillatory  character of  the  throttle-control 
activity,  which  influences  glidepath  error  for  both 
the basic  aircraft  and  backside SAS modes,  and  which 
also  couples into  the  speedcontrol  loop  for  the 
backside  SAS  mode.  These  characteristics  were  later 
rectified  with  improved  control laws as reported  in 
the  appendix. 

Aggregates of  ghdepath  error,  glidepath  error  rate, 
and  approach  speed  error over the final 30 sec prior 
to decision  height  are  presented in figure 44 for  the 
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Figure 39 .- Longitudinal  performance  and 

three  STOL  control  concepts  that  were  evaluated. 
Somewhat  greater  dispersions  in  these  quantities  are 
evident  for  the  basic  aircraft  configuration;  however, 
none of the  differences is significant to  the 90% 
confidence level. The  data  are  presented to  furnish 
quantitative  boundaries to  tracking  dispersions  and to  
provide  a  quantitatively  based  feeling  for  differences 
in  the  STOL  control  concepts.  For  example,  it  might 
be felt that  slower  correction  of  glidepath  errors is a 
characteristic of  the frontside SAS control  concept. 
However,  presented  in  this  way,  the  data do  not 
support  this  conjecture.  On  the  other  hand,  the 
improvement  in  speed  control  provided  by  both 
speed SAS modes is strongly  evident, as is a speed 
bias on  the slow  side  for  the basic  aircraft  mode.  It 
could  thus be inferred  from  these  latter  data  that 
even the facility of  a  pitch flight director  does  not 
fully  induce  the  pilot to  assume the unconventional 
control  technique  of  pitching  down  when  adding 

THROTTLE  FLIGHT 
DIRECTION ERROR, deg 

control  parameters  during  turn  segment. 

power t o  correct up to  path, particularly at  lower 
altitudes. 

The  control  utilization  characteristics involved in 
achieving the  longitudinal  performance  data  just 
discussed are summarized in  figure 45. The  controls 
are  categorized  for  each STOL control  concept as 
primary,  secondary,  or  trim, as was outlined  in  an 
earlier  section  and  summarized  in  table 2 .  A further 
separation of the  data  for light and  moderate  head- 
wind  components is necessary in  order  to  properly 
account  for  the  effect  of  differing  trim  aerodynamic 
flightpath angles affecting the  mean value of  con- 
figuration  parameters  other  than  power. I t  should  be 
recalled that  the  objective was t o  maintain  power 
settings  in all control  modes  which  were basically 
independent  of  wind.  This was achieved by  con- 
trolling  trim  drag  directly by  setting a  specified 
appropriate  trim  nozzle angle (basic aircraft  mode), 
setting  a  specified  pitch  attitude,  which  would 
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indirectly  induce  the  appropriate  trim nozzle  angle 
(backside SAS mode), or setting a specified  trim 
power,  which  would  result in correspondingly 
appropriate  trim  pitch  and  nozzle angles  (frontside 
SAS mode). An additional  complication arises in the 
frontside SAS mode  where  it is also  desired to  
maintain  augmentor  choke  position,  driven in a  lift 
compensation crossfeed mode  from  nozzle angle, at  a 
nominal  setting of 25% closure, even  as the  trim 
nozzle  angle is varied. 

The  success  of  these control  concepts  in  the  trim 
management  sense just reviewed  can  be  inferred 
from the relative location  of  the  mean values of  the 
control  utilization  aggregates  of  figure 45, although 
the  data base is certainly  inadequate  and  the  correla- 
tions  sometimes  weak.  This is particularly  the  case 
for  the  frontside SAS mode,  where the moderately 
wide  dispersion  in  nozzle  angles encountered while 
controlling to glidepath  with  this  system  seems to 
mask  any  clear identification  of  a mean  nozzle 
position. 

It is of  greater interest to  interpret  the  data as 
tabulations  of  control  excursions  and  hence  control 
utilized  in the  course  of achieving the  performance 
measures of figure 44, although  the  absence  of  any 
significant  atmospheric turbulence  during  these  tests 
should be recalled.  The more general  measure of 
control utilized  can  be  inferred approximately  from 
figures 5 and 6, and  more  precisely if desired,  from 

the  aircraft  aerodynamic  data  reported  in  references 2 
and  7. 

To  complete  the  presentation of performance 
and  control  data  during  this  segment, figure 46 
summarizes  the  pertinent  lateral  parameters  for all 
approaches  during the final 30 sec  prior t o  decision 
height. 

Pitch  control characteristics- The  control  utiliza- 
tion  data  just  presented  warrant  a special  discussion 
of the  pitch-control  characteristics  for  each  STOL 
control  concept. Figure 47 presents  aggregate  ampli- 
tude  distribution  summaries of inner-loop  pitch 
control  parameters  for  the  separate  assignments  of 
pitch  attitude as the  primary  control  (frontside SAS), 
the  secondary  control  (basic  aircraft),  and  the  trim 
control (backside SAS). The  time,  history  nature  of 
pitch  control  for  these assignments is evident  in 
figure 38.  It is apparent  that  the  choice  of  pitch 
attitude as the  trim  parameter  for  the  backside 
speed-control SAS does not result in a basically 
unattended  control  to  the same  degree that is the case 
for  the trim throttle  or nozzle in the  two  other 
configurations, even with  the assistance of  a rnoder- 
ately good pitch-attitude  hold SAS. The  most  obvious 
explanation  here  probably lies in the  dual use of  the 
column  for both pitch  and roll control,  there  being 
no alternative to relatively high gain roll control 
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Figure 46.- Lateral  performance  and  control  param- 
eters  during final 30 sec  of  approach. 

inputs  in  order t o  meet  the  stringent  lateral  perfor- 
mance requirements  during  the  turn  and final 
approach  segments, which  inevitably  contaminate 
even a  perfect  pitch-attitude  hold SAS. I n  addition,  it 
is important  to  note  that  despite  this  rather  theo- 
retical  assignment  of  relative  control  function  noted 
above, the physical fact  remains  that  pitch  attitude 
retains  a  singular  control significance for  the  pilot, 
not  only because of  the  dominating  nature of  the 
associated kinesthetic  feedback  cues,  but  also  due t o  

the usual linkage of  pitch  control  to  the physically 
primary  cockpit  column  control.  In  consequence,  it 
might well be inferred  that  the pilot’s most  familiar, 
and  perhaps  most effectively designed and  instinctive 
control, is thus misused  in a pure  backside  mode  of 
operation,  being used to assist attitude  stabilization, 
but  not  for  any  form  of useful  flightpath  control. 

The  qualitatively similar  shapes of  the  histograms 
presented  in figure 47 also suggest that  the inner-loop 
control  and  performance  measures used are  evidently 
insensitive t o  tracking  either the essentially  fixed trim 
pitch  attitude  of  the  backside SAS mode or the low 
amplitude,  slowly  varying  secondary (speed control) 
pitch  attitude  tracking  task  of the basic  aircraft 
mode.  At  least  in  the  latter case some  useful  control 
is achieved in  addition to attitude  stabilization. 
However, as presented  earlier  in figure 44, the  outer- 
loop speed  performance is notably  better  in  the 
former case due  to  the speed-control SAS. 

Proceeding to  the  next level of  pitchcontrol 
utilization,  the  frontside  speed-control SAS  mode 
seeks to  take  advantage of  the good speed control 
provided by  the speed SAS, while realizing  a  primary 
control  function  from  pitch  attitude. This results 
in the visibly different  pitch  control  measures  of 
figure 47, which  nonetheless fail to pass 90% 
significance  tests on the  sample variances.  However, 
the  fundamentally  different  nature  of  control is 
greater  than  perhaps is quantitatively  evident.  The 
control  concept is characterized by undeniably 
increased  pitch  activity in amplitude  and  frequency, 
with  a  corresponding increase in nozzle activity 
brought  about  by  the  speed-control SAS. Were it  not 
for  the  albeit  performance-penalizing inclusion of  the 
augmentor  chokes  to provide direct lift control 
augmentation  and  compensation  of lift losses due  to 
nozzle retraction in this  system,  this  pitch-control 
activity  would be even greater.  Although  influenced 
by  the effective heave damping in the  short  term,  the 
pitch  activity is primarily  a  kinematic  phenomenon 
associated with  low  approach  speeds,  and  might be 
argued t o  represent  an excessive utilization of  pitch 
control,  particularly  if  rapidity  of  path  response is 
demanded.  Yet  some significant advantages accrue 
from  this  mode  of  operation,  particularly  for designs 
similar to  the test  aircraft  where  adequate  glidepath 
control  response  and  authority  can  be achieved under 
normal  circumstances  without  the  need to  modulate 
power.  However, the  many design-related  considera- 
tions associated with  the  three  STOL  control  con- 
cepts investigated here  are  beyond  the  scope  of  this 
report. 
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Figure 46.- Lateral  performance  and  control  param- 
eters  during final 30 sec  of  approach. 

inputs  in  order t o  meet  the  stringent  lateral  perfor- 
mance  requirements  during  the  turn  and final 
approach  segments, which  inevitably  contaminate 
even a  perfect  pitch-attitude  hold SAS. In addition,  it 
is important  to  note  that  despite  this  rather  theo- 
retical  assignment  of  relative  control  function  noted 
above,  the physical fact  remains  that  pitch  attitude 
retains  a  singular  control  significance  for the  pilot, 
not  only because of  the  dominating  nature  of  the 
associated  kinesthetic  feedback  cues,  but  also  due t o  

the usual linkage of pitch  control to   the physically 
primary  cockpit  column  control.  In  consequence,  it 
might well be inferred  that  the pilot's most familiar, 
and  perhaps  most effectively designed and  instinctive 
control,  is  thus misused in  a  pure  backside  mode  of 
operation,  being used t o  assist attitude  stabilization, 
but  not  for  any  form  of useful  flightpath  control. 

The  qualitatively similar  shapes of  the  histograms 
presented  in figure 47 also suggest that  the  inner-loop 
control  and  performance  measures used are  evidently 
insensitive to  tracking  either the essentially  fixed trim 
pitch  attitude  of  the  backside SAS mode or the  low 
amplitude,  slowly  varying  secondary (speed control) 
pitch  attitude  tracking  task  of  the basic  aircraft 
mode.  At  least  in  the  latter case some useful control 
is achieved in  addition  to  attitude  stabilization. 
However, as presented  earlier in  figure 44,  the  outer- 
loop  speed  performance is notably  better  in  the 
former case due  to  the  speed-control SAS. 

Proceeding to  the  next level of  pitchcontrol 
utilization,  the  frontside  speed-control  SAS  mode 
seeks to  take  advantage of  the good speed control 
provided by  the  speed SAS, while realizing  a  primary 
control  function  from  pitch  attitude. This results 
in  the visibly different  pitch  control  measures  of 
figure 47, which  nonetheless fail to pass 90% 
significance  tests on the sample variances. However, 
the  fundamentally  different  nature  of  control is 
greater  than  perhaps is quantitatively  evident.  The 
control  concept is characterized by undeniably 
increased  pitch  activity in amplitude  and  frequency, 
with  a  corresponding increase in nozzle activity 
brought  about  by  the  speed-control SAS. Were it  not 
for  the  albeit  performance-penalizing  inclusion of  the 
augmentor  chokes  to provide direct  lift  control 
augmentation  and  compensation  of  lift losses due  to 
nozzle retraction in this  system,  this  pitch-control 
activity  would be even greater.  Although  influenced 
by  the  effective heave damping  in  the  short  term,  the 
pitch  activity is primarily  a  kinematic  phenomenon 
associated  with  low  approach  speeds,  and  might be 
argued to  represent  an excessive utilization  of  pitch 
control,  particularly if rapidity  of  path  response is 
demanded.  Yet  some significant  advantages  accrue 
from  this  mode  of  operation,  particularly  for designs 
similar to  the  test  aircraft  where  adequate  glidepath 
control  response  and  authority  can  be achieved under 
normal  circumstances  without  the  need t o  modulate 
power.  However, the  many design-related  considera- 
tions  associated  with the  three STOL control  con- 
cepts investigated here  are  beyond  the  scope  of  this 
report. 
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Decision  Height,  Breakout, and  Landing Transition 

General- For purposes of initial  evaluation, the 
nominal  Category I1 decision  height  of 30.54 m 
(100 ft) generally applying t o  CTOL  operations 
was  used as the  altitude  at  which  the  pilot removed 
his blind  flying hood  and  proceeded  with  the  objec- 
tive of  landing  the  aircraft  within  the  prescribed 
touchdown  zone.  It was recognized that design- 
related  considerations  associated  with  engine-out  or 
missed-approach  performance  might well restrict 
the achievable decision  height to a  higher  altitude; 
however,  these  factors  were  not  addressed.  In  addi- 
tion,  the  nominal 7" glide-slope angle chosen  for 
the  tests  bordered on the  steepest  limit which is 
probably  acceptable  for  instrument  approach 
operations, since  a  nominal 69-knot  approach speed 
resulted in a  sink rate  of 4.36 m/sec (860 ftlmin), 
providing  only  a  nominal 7 sec for  the landing 
transition. As discussed in  reference 18, it is 
generally regarded that an upper  limit  of 5.1 m/sec 
(1000 ftlmin)  exists as a maximum  acceptable  sink 
rate  during  typical  corrections  or  disturbances,  at 
least  when  operating to  these  altitude  limits.  It 
should be emphasized that this  research  did not seek 
to  define  satisfactory  decision  heights  and associated 
performance  requirements,  but  merely to  provide 
some  background  data  which  could  be  useful  for a 
more  exhaustive  future  study. 

The navigation and  guidance  errors  existing  at 
decision  height have been  reported earlier  in fig- 
ures 41 and 43. These  data  are  relative to  the elec- 
tronic  centerline  which was in  reality displaced 
(because  of physical placement  of the  transmitting 
antenna) 5.2 m (17 ft)  to  the  left  of  the  actual 
centerline of  the 30.5-m  (100-ft) wide STOL  runway 
used for landing. The  more  pertinent  measures  of 
net  positioning  errors  required to  be  adequately  taken 
out  by  the  landing maneuver  are the  actual displace- 
ments of the aircraft  when passing decision  height, 
relative to  the actual  centerline.  The  combined 
navigation  and guidance errors  existing at   the  pilot's 
decision  height  as  measured  by the  tracking  radar 
are summarized in figure 48,  and will be discussed 
separately  for  their vertical and  lateral  considerations. 

Glidepath  corrections near breakout- A con- 
sideration of  the  geometry  and  kinematics  of  low- 
speed  steep angle approaches suggests that  it is 
particularly  important to  have  small  errors in both 
vertical  position and  rate relative to   the glideslope at 
decision  height, the objective  being to  allow the 
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Figure 48.- Net  position  errors  at  pilot's  decision 
height. 

aircraft t o  carry  on  toward  an  acceptable vicinity of 
the  touchdown  zone  with  minimum  requirement 
for maneuvering by  the  pilot,  except  to flare.  This 
becomes especially important  in cases  where visual 
cues  may  be marginal just  prior t o  decision  height, 
and  degraded  afterward as the pilot  seeks  improved 
visual orientation  for flare and  landing. More specifi- 
cally, if the aircraft is low  just  prior  to  reaching  the 
decision  height,  for  example, the pilot is perhaps 
more  inclined to make a correction  that will result 
in  an  inertial  flightpath angle directed  toward  the 
glidepath  intercept  point.  The  correction  made by 
the  pilot  might  be  altogether  different  (probably 
much less severe) than  that  induced  by  the flight- 
director  command law. (In  this  investigation,  the 
flight-director  command  law was ignorant of these 
considerations.) This infomiation is appropriately 
presented,  however,  by  the  inertially  referenced 
flightpath angle bar relative to  the inertially  calcu- 
lated  perspective  runway  display.  Both  are  features 
of  the  electronic  attitude  director  indicator  described 
in an earlier section.  This  display  feature was eval- 
uated  only  during a few approaches,  however,  and 
not  by all pilots. 

Recognizing  the  importance of both  flightpath 
error  and  the  direction  of  the  longitudinal  velocity 
vector (i.e., inertial  flightpath  angle)  just  prior to  and 
at  breakout,  the simple  analysis shown  in figure 49 
suggests how acceptable  combinations  of  these 
parameters  might  be  determined.  The  assumption is 
made  that  the desirable range for  pointing  of  the 
longitudinal  flightpath  vector at decision  height is 
no steeper  than  the  electronic  glidepath  intercept 
point,  and  no shallower than one-half of  the distance 
into  the  touchdown  zone.  Furthermore,  flightpath 
angles should  be  restricted to within 22' of  the 
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Figure 49.- Definition  of  desirable  conditions  at  breakout. 

nominal  path  in  order to  confolm  to some of  the 
considerations  presented in reference 4. 

The  resulting  envelope  of  optimum  combinations 
of vertical path  error  and  flightpath angle at  break- 
out, based on small-angle approximations, is shown  in 
figure 50, on which  are plotted  the  measured  data 
from  the 56 approaches of this  investigation.  The 
data  from  the cases  for  which the perspective  runway 
was  employed  are  separately  identified,  although no  
correlation  with  this thesis  seems to  exist.  The  objec- 
tive of this  figure is to  suggest the  nature  of  the 
longitudinal  maneuvering  required  following  breakout 
in  order to position  the  aircraft  for flare and  landing, 
and to  imply  that  programmed  constraints  on 
flightpath  angle  excursions  approaching  decision 
height  may be desirable.  These  considerations  were 
addressed in the improved  glidepath  control  laws 
that were  developed after  completion  of  this flight 
program  as  reported  in the  appendix. 

The  longitudinal  touchdown  performance  achieved 
in  these  tests is summarized  in  figure 51 for 62 
landings. Touchdown dispersion data were obtained 
from both radar  and photo measurements  and  have 
an  estimated  accuracy  of +5 m (216 ft)  longitudi- 
nally. The  touchdown sink  rates  were  obtained  from 
a  third-order  complementary  fdter  that  combined 
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radar  altimeter  data  with  normal  accelerometer  data; 
the  sink  rates are thought to be  accurate to within 
0.5 m/sec (1.6 ftlsec).  Strut  compression was  used 
to signal touchdown.  It is worth  noting  that  both 
short  touchdowns,  identified as A and B in  figure 50, 
were  also at  the higher  sink rates,  and  that  these  two 
landings  correlated  with  lower  and  steeper  conditions 
at  breakout, as shown. Both occurrences  drew  pilot 
comments  about too little  time to  appreciate  the 
visual situation  and  react to  it  adequately.  The 
longest  landings tended to  be low  floaters  for  which 
the pilot  could  have  safely  accomplished earlier 
touchdown  had  it  been necessary to   do so in  order 
to realize stopping distances. No attempt  to gather 
field length  data was made in this  program,  since 
the  flights  consisted of touch-and-go  landings 
between  multiple  approaches.  Although  the  three 
STOL  control  concepts  tested  represented  rather 
widely  varying  piloting  techniques for flare and 
landing,  little reliable correlation of touchdown 
data  with  control  mode  appears  to be  evident,  a 
result consistent  with similar  investigations  presented 
in reference 1 1 .  

Lateral maneuvering requirements- T h e  lateral 
position  errors  at  breakout  shown  in figure 48 were 
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useful in creating  a  lateral-directional  control  task 
following  breakout  to  landing.  The  magnitude  of 
error shown in  the figure was contributed t o  by 
several factors  which  were  in  addition to  the  inten- 
tional 5.2-m (17-ft)  lateral  offset  resulting  from  the 
physical location  of  the MODILS electronic  guidance 
centerline  relative to  the actual  runway  centerline. 
To review, these  factors  were (1) the relatively low 
sensitivity of  the localizer  raw  data  tracking  box; 
(2) the unusual  coarseness  of the MODILS azimuth 
signal  (see table 1); (3) the  less-than-required  resolu- 
tion of  the lateral  position  error signal feeding the 
guidance laws; (4) the persistence of  a small control- 
law feedback  bias  from  the  roll angle gyro  following 
rollout  from  the final turn;  and ( 5 )  the  day-to-day 
MODILS azimuth  alignment  errors  shown  in fig- 
ures 40 and 41. Although all these  factors  would 
require  improvement  for  an  operational  system, 
the desirable  result for  this  investigation was to  
surprise the pilot  with  at  least  the  magnitude 
of  lateral  correction  required  after  breakout,  the 
direction  thought to  be less important in the artifi- 
cial environment  of  superb visual scene  available. 
The  left-to-right  correction  typically  required  also 
occurred  in  the presence of  left  crosswinds  which 
created  a  challenging  combination  of  maneuver 
demands t o  correct  position  and  also  accomplish 
suitable  decrab to land. 

The range of  lateral  maneuver  demanded  by 
the  situation is summarized for all approaches  in 
figure 52. The  probability  density  tabulations  of 
roll-angle and roll-rate  utilization  during the task 
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segment  for  breakout to  landing  provide  an  initial 
measure of roll- and  yaw-control  utilization  require- 
ments  for  these maneuvers. It  should  be  noted  that 
there  were no rejected  landings  because of unaccept- 
able  positioning at  breakout  for  any  approaches 
flown. 

The  lateral  touchdown  dispersions  achieved  are 
shown  in figure 53; they have  an estimated  accuracy 
of 22 m (6.6 ft). 
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Figure 52.- Roll  control  utilization  during  maneuver 
to  land  following breakout. 
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Figure 53.- Lateral  touchdown  dispersion. 

VI. PILOT  COMMENTS, HANDLING QUALITIES 
AND PROCEDURES, AND DISPLAY 
CONSIDERATIONS 

General 

The  comprehensive  approach  task  reported  here 
provided  the  opportunity to  assess a  wide  variety 
of factors involved in  the  potential feasibility of 
constrained  terminal-area  approach  profiles  for 
powered-lift STOL aircraft.  Workload  and  perfor- 
mance  considerations,  handling  qualities  and  control 
considerations,  and  cockpit  display  requirements  are 
perhaps  the  more  significant  for discussion from  a 
piloting  point  of view. As discussed  in  this section, 
they serve to  complement  the  flight-test  data  just 
presented. 

Three research pilots  (the  authors  of  this  report) 
with  broad  experience  in low-speed handling  qualities 
programs  and  in  various  terminal-area  approach  and 
landing  programs  evaluated  the  approach  task  of 
this  investigation.  Pilots (A) and (B) were from NASA 
and  pilot (C) was from  the  National  Aeronautical 
Establishment,  Ottawa,  Canada. Each had  already 
acquired  considerable  experience  in the  test  aircraft, 
and  each  was  well  acquainted  with the technical  and 
operational  considerations  of  powered-lift  STOL 
aircraft. In addition,  the  two NASA pdots  had 
recent  flight  experience in two  other  STOL  air- 
craft  that  employed  different  powered-lift  concepts; 
they  also  had  broad  simulation  exposure to a  variety 
of  STOL  handling  qualities.  One of the NASA  pilots 
(B) also had  considerable  experience in V/STOL 
aircraft  and  helicopters,  as well as  conventional 
aircraft;  the  other (A) had an exclusively  conven- 
tional  aircraft  background  prior to his STOL research. 
The  experience  of the  third  pilot (C) was  primarily 
in  conventional  jet  aircraft,  light  STOL  aircraft, 
and  helicopters  (including  extensively  variable 
stability  helicopters),  although he had  some  exper- 
ience in a  V/STOL  aircraft. 

One  of the  more  significant  aspects of this  experi- 
ment being the electronic  cockpit  displays,  each 
pilot  was  able to be  adequately familiar  with the 
display  features  and  their use from  other programs 
being conducted on the research aircraft,  or  through 
use of the fixed-base  laboratory  simulation  prior  to 
flight evaluation.  The  same  prior  in-flight  experience 
existed  in  the basic handling  characteristics of  the 
three  STOL  control  concepts  that were  evaluated. 
In consequence,  the  work  reported  here  benefits 
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from  rather  extensive  prior  familiarity  with essen- 
tially all of  the  constituent  elements  on  the  part  of 
all the  evaluation  pilots. 

To encourage  a  more  consistent  approach to  the 
many  pilot-related  aspects  of the  approach  task,  a 
questionnaire  was  developed  which  presented  those 
considerations  thought  relevant to  the evaluation. 
The  questionnaire,  which  was  completed  after  each 
flight,  was  particularly  useful  in  establishing  con- 
sistent  criteria  for  making  pilot  conlments  and 
assigning  pilot rating  for each  task  segment.  The 
constraint was  imposed that  a  pilot  rating be  averaged 
over the  number  of  approaches  flown  in  a  like  control 
configuration  during  a  particular flight. 

This  section  summarizes the  more  significant  pilot 
comments  by  segment,  and  presents  the  pilot ratings. 

Level-Downwind  Segment 

The  procedural  requirements  during the level- 
downwind  segment  consisted  of  selecting  the 
deceleration  schedule  (a  single  button-pushing  action 
determined  by  progess relative to way point 2) and 
subsequent initial flap  deployment to  the  approach 
flap  setting.  For  both  requirements,  copilot assistance 
was  required to  back  up  the  appropriate  selection  of 
deceleration,  often  modified  to a point in advance 
of  reaching  way  point 2 if winds  were  moderate,  and 
to  monitor  the slowly  moving  flaps  (2"lsec) to  the 
required  settings  iince the available  mechanical flap 
lever  selection  detents were not generally appropriate 
to  the  settings used.  Despite the  rather  significant 
thrust  vectoring  associated  with  this  initial flap 
deployment,  the  only  apparent  longitudinal  control 
annoyance was a  conventional  nosedown trim 
requirement  to  prevent  the  ballooning  that was 
associated with  the very  first few degrees of flap 
deployed at 120 knots. 

The  flight-director  command  bars  were  smooth 
and  easy to  follow  in  this  segment,  requiring  little 
enough  attention to  allow adequate progress monitor- 
ing  and  wind  display  monitoring on the MFD  in 
anticipation  of  deceleration  and  descent,  and to  
monitor  the  flap  settings. Display monitoring,  cockpit 
procedure,  and  control  management  workload levels 
were  generally  light to  moderate.  There was no 
tendency  for  the  changing  functions of the  pitch 
and  throttle  directors to confuse the pilot  during 
this  segment  of  increasingly  blended  multiloop 

control  laws,  nor were the relatively  similar control 
frequencies  of  the  pitch  and  throttle  commands  that 
were  generated  in  response to  any  altitude  or  speed 
errors in any way  difficult t o  control.  Although  there 
was  some  concern  initially that  inattention  to  one  of 
the  pitch  or  throttle  director  commands  could  lead to  
sustained  and  possibly  confusing  errors  in  altitude 
and  speed (a potential  problem  area  with  multiloop 
control laws), no such  situations were encountered 
during  extensive  simulation  and flight trials  of  this 
concept. 

Performance  achieved  during  this  segment 
generally met  the pilot's objectives,  the slight balloon- 
ing  associated with  initial flap deployment  being  of 
mild annoyance.  Speed  control was  quite  acceptable, 
the  only  major  control  input associated with follow- 
ing the  decelerating  reference that was obvious to  the 
pilot  being  the  initial  throttle  reduction  required  to 
slow  from 140  to  120  knots.  Thereafter,  the  decelera- 
tion  profde to  the  initial  approach airspeed was 
nicely  tailored to  that  inherent in flap  deployment, 
allowing  nearly constant  throttle while  pitch  was 
adjusted to maintain  constant  altitude. 

Descent-Capture  Segment 

The  philosophy  adopted  for  glide-slope  capture 
reflected  well-established  techniques  for  CTOL 
aircraft.  Typically,  some  appropriate  configuration 
change  (undercarriage or flap lowering) is effected 
which results i n  the  aircraft  assuming  the  nominal 
glide slope  with  little or no change in throttle  setting. 
The  glide-slope capture maneuver is thus essentially 
a transition  between trim states,  and  for  steep 
approach  angles  involves a change in configuration 
drag  which is approximately  twice that  for CTOL 
aircraft on more  shallow  approaches. In powered- 
lift  STOL  aircraft  these  large  drag  changes  are 
usually  accomplished  through  the  mechanism  of 
thrust  vectoring. In the test  aircraft  used in this 
investigation  this  was  realized by  setting  the  nozzle 
angle  'from 6" to  about 80°, relative to  aircraft 
datum, while the  throttle  setting was  maintained  at 
about 93% rpm.  Associated with  this  nozzle  deploy- 
ment is the  requirement  for  an  approximate 6" 
reduction  in  pitch angle (to  about -4") in  order to  
establish the  trim  descent  configuration  at  the 
desired  airspeed.  The  greater  magnitude of these 
trim  configuration  changes  significantly  affects  con- 
trol law  design. 
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The flight director was  programmed  with  open- 
loop  control  position  commands  during glide-slope 
capture  that  would  result  in  the  aircraft's  assuming 
its  descent  trim  condition  appropriate to  the  initid 
approach  configuration  and the system-estimated 
initial  aerodynamic  flightpath angle. From  its 
estimate  of  groundspeed,  the  flight  director  would 
anticipate  intercepting  the  &de  slope  and  would 
remain  in  this  effectively  open-loop  glide-slope 
capture  mode  for  about 15 sec  or  until  appropriate 
convergence had  been  established on the descending 
path  before  transitioning to  the glide-slope track 
mode.  At glide-slope capture,  the raw data  tracking 
box would jump to the  top  of  the EADI  display to 
indicate  transition to  the  upcoming  descending 
segment,  and  the  throttle  director  would revert from 
its  closed-loop  altitude-speed  control  laws, used 
during  the level downwind  segment, to  a  mode 
that  commanded  the  descent  trim  rpm.  After  setting 
this value  (typically  little  change was needed)  the 
pilot  had to  manually  deploy  the nozzles to  a posi- 
tion  that  would null the nozzle  angle  director,  which 
appeared on the EADI at  this  time. Since the flight 
director  frequently  entered  the glide-slope capture 
mode  somewhat  early  due to  erroneous  groundspeed 
estimates  (that were  caused by TACAN DME errors 
affecting  the navigation  filters  as the aircraft  passed 
nearly  overhead the  station),  the  pilot  often  had to 
modify his  timing of nozzle  deployment  in  order to  
effect  a  better  capture. He could base  his  decision on 
the  rate of convergence on the EADI  tracking box, 
which  would  begin to  move from  the  top  of  the 
display toward  the  aircraft  symbol;  the  procedure 
was  similar to  that used for  instrument  approaches 
without  the aid  of a flight director. Since a positive 
signal had to  be  provided to  the flight director  that 
nozzle deployment was indeed  being  effected  (as 
described  in a  previous  section on deceleration 
scheduling) the  pilot  first  selected  the  Glideslope 
Manual button on his  mode  select  panel  prior to 
setting  the  required  nozzle angle, an action  which also 
allowed the speed  reference to  reduce by 5 knots. 
Finally,  the  pitch flight director was programmed 
with an appropriate  direct crossfeed  from  nozzle 
angle to  assist in coordinating  the  attitude change 
required  with  nozzle  deployment  from  the  attitude 
existing  at  capture  entry to  an appropriate  descent 
trim value,  typically -4". In consequence,  the  entire 
glide-slope capture maneuver was essentially open 
loop,  except  that  after  practice  the  pilot  could  judge 
the  best  initiate  time  and  rate of manual  nozzle 
deployment to  end  up  in  the new  trim  condition on 

the  proper  descent  path.  However,  if  the  pilot  under- 
took any  closed-loop  control on his own,  it was 
preferable to  give priority to  controlling  the  speed 
error, since the  speed-control SAS modes, if used, 
could  be engaged more  smoothly.  This was  accom- 
plished after  setting  the  nozzles  by  selecting  the 
Speed  SAS  switch on the pilot's mode  select panel 
(fig. 14). Alternatively, if the  speedcontrol SAS 
were to  be  used on descent in either  its  frontside  or 
backside  configurations, it could  be "armed" in 
advance on the  downwind leg  (by  selecting the 
Speed  SAS  switch)  and the nozzles  would  auto- 
matically  deploy  when the pilot  selected the Glide- 
slope Manual button for  descent.  The  nozzles  would 
move to  a  setting  of 70" at  a  futed  rate of 20"lsec 
where the  speed-control  loops  would slowly close. 
This  procedure closely  resembled the usual  case for 
CTOL  aircraft  where  a single-action  configuration 
change is effected to  begin descent. 

The  pilots  felt  that  these  procedures  were  appro- 
priate  and  comparable t o  techniques  for CTOL 
aircraft. Since  glide-slope capture  coincided  with  a 
more  or less major  transition  in  control  technique 
relative to  that used on  the level downwind  segnent, 
the discrete  and  basically  open-loop  nature of  the 
event  was  considered  appropriate. I t  was  considered 
somewhat  cumbersome to (1) set  the  throttle levers 
at  the  beginning of capture,  (2) select  Glideslope 
Manual, (3) set  the  nozzle levers, simultaneously 
pitching  down to -4", and  finally, (4) return to the 
throttles as the glide-slope track  mode was entered. 
An integrated  propulsion  system  control lever 
incorporating  control over both  throttle  and nozzle 
was  recommended as a possible  means of  simplifying 
the  procedure.  The  automatic nozzle deployment 
for  the  Speed  SAS  modes  using  the  Glideslope 
Manual button was preferred.  Additional  cues that 
the  director  had  indeed  entered  the  capture  mode 
were  considered  necessary,  and  could be easily 
incorporated  by  mode  annunciation, using the EADI 
bezel  lights  (or  other means), as shown  in figure 16. 
(These annunciators were  employed  for  this  investiga- 
tion  only at way point 6, where the final straight 
segment was captured.)  Finally,  the  approach  profiles 
that were  flown  provided an altitude change  of 
approximately 100 m (330 ft) in which to accomplish 
the  initial  descent,  before  entering  the final turn. 
This was considered  by  the  pilots to  be  the  minimum 
acceptable  when  specifying the  approach profile 
geometry  in  order  to  permit  adequate  stabilization 
in  the  descent  configuration  before  commencing 
the  turn. 
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Descending-Turn  Segment 

Partly  as  a  consequence  of the still relatively 
loose  glidepath  tracking  requirements  during  the 
descending-turn  segment of  the  approach,  the  major 
effort required of  the  pilot  at  this stage of  the 
approach  was  toward  ensuring  good  lateral  perfor- 
mance.  This  required  close  concentration  on  the  roll 
director  bar  to avoid  delay in responding to  the  turn 
entry  command,  and  thereafter, close attention  had 
to  be  paid  in order  not  to  overlook small errors  in 
the roll bar. The  requirement to  monitor  approach 
progress on  the MFD in  order  to call for  the final 
flap  setting also  provided the possibility  of  some 
additional  lead  toward  ensuring  a  good  rollout. In 
this  regard, the raw lateral  position  data available 
from  the EADI tracking box  and  the  data  presented 
on the MFD in  conjunction  with  the  aircraft  track 
prediction  vector (fig. 15) were both useful  and not 
mutually exclusive. 

Two  pilots  commented on an  occasional  tendency 
toward  a mild pilot-induced  oscillation  in roll appear- 
ing during  this  segment,  reflecting  the higher  pilot 
gains on  roll-flight-director  error  just  discussed,  and 
possibly contributed to  by  small  nonlinearities in 
roll-control  sensitivity.  The  net  result of shortcomings 
in  roll-director  tracking,  ambient  winds,  and  also 
TACAN to MODILS navigation errors was  generally 
to  allow the  aircraft to  drift  outside  during  the  turn. 
However, the  performance levels achieved  were not 
considered to be unacceptable,  mainly  because  any 
resulting  localizer  overshoot at  turn  rollout  seldom 
exceeded 100 m (328 ft)  and was  well within  the 
t1.52-m (k5OO-ft) lateral  dimensions  of  the  EADI 
tracking  box. 

The  consensus  on  longitudinal  performance was 
that  it was adequate  at  this stage of  the  approach, 
there never  being any  concern  about  the  ability  to 
achieve the  more  stringent  performance  requirements 
during final approach  and  at  decision  height.  The 
realistically lesser constraints  on vertical path  per- 
formance  up  until turn  rollout  (the  tracking  box 
had  dimensions k15.3 m ( 5 0  ft)) allowed concen- 
tration  on  other  longitudinal  requirements,  namely 
selection  of flap to  the  landing  setting,  dealing  with 
the associated deceleration,  and  adjusting  longitu- 
dinal  trim with  the  auxiliary  control  as necessaly in 
the changing relative winds. It was  found  that  the 
copilot occasionally had to  provide  a  reminder that 
the  approach progress  was such  that final flap  should 
be  deployed  in  the  latter  half  of  the  turn.  In  most 
circumstances,  the  effects  of  this  final  deceleration 

were  scarcely  noticeable.  However, on a few  occa- 
sions  when an associated  downside path  correction 
compounded  the  effect,  the  pilot  became  aware  of  a 
temporarily  lower  power  setting and associated 
higher  angle-of-attack  situation  for the basic  aircraft 
mode.  Similarly,  although  the  automatic  nozzles 
were  generally adequately removed from  their  full 
down  limits  during  deceleration,  they  could  some- 
times  be  forced onto  the  stop  if  correcting  down to 
path while  also  decelerating in either  of  the  speed- 
control SAS modes. 

The  dynamics  of the longitudinal flight director 
were thought  to be fairly reasonable during this 
segment, the  throttle  and  pitch  bars having suitable 
gains. The  speed-error  thermometer scale could be 
easily interpreted against  either a fuced or reducing 
speed  reference,  which,  were  there  any doubt as to 
its  current value,  could  be  quickly obtained  from  a 
glance at  the  reference  speed  annuniator  window  on 
the  mode  select  panel.  After  practice,  however, it 
was a simple matter  to cross-check  the  displayed 
speed  error  against the digital airspeed presentation 
immediately  above.  Although  the digital format is 
deficient  in  effectively  displaying  rates of change to  
the  pilot,  the  analog  pointer against the  thermometer 
scale was effective, if observed, in presenting  gust 
information,  shear  information,  or  maneuver  rate 
errors. 

Despite the widely  accepted  need  for the nozzle 
director  function  for  trim  management  in  the basic 
aircraft  mode,  the display format  that used the 
central digital EADI window  was  considered  unsatis- 
factory  for  both  its digital and compensatory fea- 
tures.  The pilot usually  had to make  several  small 
reversals with  the  quite  awkward  nozzle levers 
(located on the overhead  console) in order  to  confirm 
the  direction of the  correction being requested, 
and  then  to find the  correct  setting.  This  problem 
was compounded  by  approximately 5 O  of hysteresis 
which  existed  in the aircraft  nozzle-control  mech- 
anism. In addition, changes  in the digitally  displayed 
error  from  trim were not compelling  enough to  
attract  attention  to  a  developing  error,  which 
frequently  had  to  be  pointed  out  by  the  copilot. 
In contrast,  the assignment of  this  display  element 
to averaged  engine  rpm  for both  the backside  and 
frontside SAS modes  was  of  relatively  little  utility. 
For  these  control  modes,  the  pilot was  able to 
observe and  respond to small change.s in  commanded 
pitch angle or  throttle  setting,  respectively, as flaps 
moved  from the  approach  setting to the  landing 
setting.  Small  changes  caused by wind effects were 
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less obvious,  but were apparently  effective  in  main- 
taining  satisfactory  trim  conditions  during the 
descending turn. 

Combined  workload levels during  this  segment 
were  considered  light to  moderate;  the  trim  adjust- 
ments  required  and  the  deceleration  characteristics 
were  considered  acceptable  for the  atmospheric 
conditions  of  the  tests. Despite the possibility, 
advanced by  one  pilot,  that provided flight director 
errors  were  kept  small, the  turning  approach  might 
be  acceptable  without the availability of  the MFD, 
using  instead  a  conventional  horizontal  situation 
indicator (HSI), it  is not considered that this flight 
investigation  was structured to  assess this  possibility. 
Typically  used  in the  heading-up  orientation  mode 
at  maximum  sensitivity, the MFD was found  to 
furnish  readily interpretable  situation  information 
throughout  the  approach, especially during  the 
turn.  Approach progress  relative to  deceleration- 
configuration  change  way  points,  descent,  and  turn 
entry-exit way points was  quickly  available  with 
minimum  effort.  Although  the HSI  was  programmed 
with  distance  and  bearing to  next way point  and  the 
track  bar provided  across-track  deviation  data relative 
to  a piecewise  rectilinear path, this  display was 
seldom  referenced;  thus, the  comparable  information 
would  have  been  more  difficult to  obtain.  None of 
the  pilots  found  the necessity to  use the HSI at all 
during  the  approach, even for  heading  information 
which was adequately available  as an  error  from 
desired track  from  the  pictorial  MFD  presentation. 
However, a  more precise  measure of  heading  was 
frequently  obtained when approaching decision 
height  from  the  heading  display on the HSI,  in order 
to  better  anticipate  the  maneuver  and  decrab  require- 
ments  during  the  landing  transition.  This  information 
could  alternatively  be  indirectly  obtained  on  the 
EADI  from the  orientation  of  the perspective  runway 
display, if used.  Consideration to  directly  presenting 
heading on  the EADI  was also suggested. 

Final Approach to Breakout 

Having  achieved the final stabilized  landing  speed 
and  flap  configuration  by turn  rollout,  the  pilot was 
left  with  the  task of meeting  the increased  perfor- 
mance  objectives  established for  the assigned decision 
height.  Both  the  flight-director  path-tracking gains 
and the displayed sensitivity of  the  raw-data  tracking 
box were  increased in  this  segment as previously 
described.  The  associated  increase  in  the pilot’s 

flight-director  tracking gains  revealed  some  oscd- 
latory  glidepath  control  tendencies  in all three  STOL 
control  concepts  evaluated;  these  tendencies were 
experienced to  varying  degrees by all pilots.  Most 
significant  was  the  tendency to  overcontrol  the 
throttle  input  in response to  the flight-director 
throttle-command  bar  for  the basic  aircraft  and  back- 
side SAS modes  of  operation.  The  pilots generally 
found themselves  using  some  lead compensation  in 
order to  suppress  or  reduce  this  difficulty,  contribut- 
ing to  what was  assessed as a  moderate to high 
workload  during  this  segment.  The same  charac- 
teristics,  but  of lesser degree,  were  noted  for the 
control law  gains  employed  in the  work  reported 
in  reference 11. That  effort assessed the  utility  of  a 
flight director  for  improving  the  straight-in  instru- 
ment  approach  task  in  comparable  aircraft  configura- 
tions,  and  employed  a  constant  EADI  tracking box 
sensitivity of k1.5 m (50 ft).  Although  this  alternative 
configuration  (which was evaluated by  the same 
pilots)  exhibited  reduced oscillatory  tendencies, no 
glidepath-tracking  or  decision-height  performance 
data  are  reported in reference 1 1 ;  thus,  the  two 
systems  cannot  be fully compared.  In  addition,  some 
tests  were  carried out using  different  tracking box 
sensitivities  which  suggested that  the pilot’s tracking 
dynamics  could  be  influenced  by  his  perception  of 
performance;  the  higher  box sensitivities were often 
associated  with  more  oscillatory behavior without 
any change in  director law gains. A more  detailed 
study  of  the  flight-director  control laws that led to  
significant  improvements is reported  in  the  appendix. 

The  corresponding  tendency to  overcontrol  in 
pitch  for  the  frontside SAS  mode  was  experienced 
more by  pilot  A  than  the  other  two  pilots. In this 
mode,  the  director gains  were  essentially the same  as 
those  also  used in reference 11, except  for  the same 
difference  in  the sensitivity of the EADI  tracking 
box  mentioned  earlier.  It was generally  felt that this 
control  mode  yielded  a less crisp response for  the 
small  precise  glidepath  corrections  which  were 
often desired  as the vertical dimensions of  the  path- 
tracking  box  reduced to  k3.66 m (+12 ft), at  least 
for  the  amount  and  rate  of  pitch-control  input used. 
All pilots  indicated  their greater  restraint in using 
aggressive pitch  control  inputs to  accomplish the 
glidepath  control  corrections  that  might,  under  some 
circumstances,  be  commanded  by the flight director. 
In  this  regard, the physically  different nature of 
throttle  and  pitch-control  inputs  should  be  kept  in 
mind.  In  the  latter case, the  ghdepath response is 
achieved through exercising the  pitch  dynamics,  a 
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mechanism  of  which the  pilots  (and passengers)  are 
strongly  aware  through  visual  and  motion  cues.  In 
the  former case,  however, the  pilot is able to achieve 
the desired  glidepath  change  through mechanisms 
from which he is usually much  more  detached: 
throttle  position  changes, engine  dynamics,  and 
aerodynamic  circulation  effects.  In  consequence, 
the  pilot is inclined to make  throttle-control  inputs 
that are  more aggressive and  steplike  than is the case 
for  pitch;  this is evidenced  by  the  time-history 
control  input  data  of figures 38 and 63. Of  course, 
the  pitch  dynamics  do  not  permit  step  inputs  in  any 
event,  hence  contributing to  the pilot's  notion  of 
apparently slower  response  relative to  his  relatively 
unconstrained  throttle  inputs. Even with  the 
augmentation  of heave  response to pitch  that was 
incorporated, all pilots  felt that  pitch-control  activity 
could  become  objectionable  in  more  demanding 
flight  conditions,  such as moderate or  severe turbul- 
ence.  The  glidepath  tracking-control  laws that were 
developed subsequent t o  these  flight trials addressed 
the need  for  rationally  constrained but still effective 
pitch-control  commands, also  suppressing  any 
oscillatory  characteristics.  These  details  are  reported 
in the  appendix.  These  difficulties  with  glidepath 
control laws notwithstanding,  the  pilots generally 
reported  that  the  glidepath  tracking  performance 
that was  achieved met  their  objectives,  despite 
occasional  excursions beyond  the  displayed  limits 
of  the EADI tracking  window. 

Speed-control  considerations  varied  according to  
the  control  concept  being  evaluated.  One  pilot (c) 
felt that  the adverse  power-speed coupling  manifested 
in the basic  aircraft  mode  by  the  requirement to pitch 
down when  adding  power  was  significantly less 
objectionable  when  the  pilot was induced to   do SO 

by the  flight  director,  than was the case  when  flying 
the basic  aircraft  visually or on instruments  without 
the flight director  when  this  unnatural  coordination 
needs to be  consciously  remembered.  Another 
pilot (A) considered both  situations  equally  objec- 
tionable,  admitting,  however, to  improved  speed 
control  with  the flight director.  The  speed-control 
SAS  modes  generally  provided  good  control.  There 
were no particular  considerations 1-egarding authority 
limits  for  the  backside SAS mode. However,  nozzle 
authority  limiting  at 45" or 105" could  be  induced 
for large path  corrections  made in the frontside 
SAS mode.  Since  the  pilot was not  directly  monitor- 
ing SAS nozzle  position,  this  saturation generally 
became apparent  by an associated  temporary  speed 
error visible at  the speed-error  thermometer  display 

and  degraded  glidepath  control  characteristics. It 
was felt  that  some  better  means  should  be  incor- 
porated to  indicate  this  occurrence to  the pilot, as 
well  as suggesting to  him a  course  of  action  that 
could alleviate the  problem. For example,  it might 
be  desirable to program  a  recognizable  change  in the 
mode of the  throttle  director  bar  from  its normal 
trim  function to  a  path-control  augmentation  func- 
tion.  This would  have the  effect  of  temporarily 
assisting the  glidepath change  being sought,  thus 
unloading  the  speed-control SAS. 

The  trim  management  aspect  of  the flight director 
was  well accepted  by all the  pilots  during  this seg- 
ment where its  importance was  primarily  associated 
with  maintaining  adequate  safety  margins on  the 
approach  and  with  ensuring  adequate  "flareability" 
for  the  impending  landing maneuver.  Without the 
flight director,  the  pilot is generally  inclined to  carry 
out a more  lengthy  straight-in  approach  from an 
altitude of at least 300 m (1000 ft) in order to  
establish an appropriate trim approach  configura- 
tion, even in visual flight conditions.  The  significant 
improvement in  capability realized here  stems  from 
the  combination of relatively tighter  speed  and 
glidepath  control,  and  the  suitability  of  the  director- 
induced  setting of the auxiliary control used  for 
trim.  Only  for  the  case of  the basic  aircraft  mode 
was the  additional  action  required  of  the  pilot in 
setting  this  control  (nozzle  angle) of any  conse- 
quence.  For  the  atmospheric  conditions  encountered, 
this infrequent  requirement  to  reposition  the nozzles 
was considered  acceptable by the  pilots.  The reality 
of the  situation was that  the relatively short final 
approach  segments  tested  did  not  allow  the  pilot  time 
to be burdened  with  the significant  mental  workload 
otherwise  associated  with  trim strategy. He was 
virtually committed to  accepting  or  rejecting  the 
situation  existing,  and,  in all cases, this  turned  out t o  
be  within  acceptable  limits.  Partly  because  of  these 
trim  considerations, i t  was generally  agreed that 
122 m (400 ft) above  decision  height  constituted the 
lowest  acceptable  rollout  altitude  for  these  tests,  and 
that rolling out  at 183 m (600 ft) above  decision 
height  provided a  noticeably  more  comfortable 
opportunity  to establish  stabilized conditions  by 
decision  height. Use of  a precision  terminal-area 
navigation  device  having  wider  coverage  might  allow a 
somewhat  lower  rollout  altitude since the  trajectory 
could  be  stabilized sooner  than in the  present  case, 
where  some  trajectory  perturbations still remained 
from  the TACAN to MODILS navigation transition 
even after rolling out on the final straight  segment. 
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The  oscillatory  tracking  difficulties  mentioned 
earlier  for  the  longitudinal flight director were much 
less significant  in the  lateral  channel. Despite an 
occasional tendency to  excite  a  small  short-lived 
control  oscillation  in roll (described  in  the previous 
subsection),  it  was  agreed that  the lateral-directional 
characteristics  of  the  aircraft  had no  significant 
bearing on  the  approach  and  landing  task.  The 
lateral  performance that was achieved easily met 
the pilot’s objectives,  although  this  judgment was to 
Some extent  intentionally  preconditioned  by  what 
may  be  a  less-than-required  flight-director  control 
law gain and  insufficient  tracking-box  lateral sensitiv- 
ity  for Operations to  a  30.5-m  (100-ft) wide  STOL 
runway. 

Some  comments on the EADI display  symbology 
and  format  indicated  that  there was  a tendency  for 
the  raster-generated  display  elements,  such as the 
tracking  window, to overlay the  director  symbols, 
thus  reducing  the pilot’s awareness  of  small  errors. 
On the  other  hand,  the  stroke-generated  elements, 
particularly the perspective  runway  display,  had 
adequate  definition  and  brightness to  preclude  any 
confusion  among  frequently  coincident  symbols. 
The  pilot  who  evaluated  the  perspective  runway dis- 
play commented  on  its  utility  for (1) anticipating 
turn rollout as it moved in  smoothly  from  the  left 
edge  of the  display, (2) reinforcing  his  perception 
of  drift angle or heading  errors on find,  and 
(3) increasing his awareness of the  approaching 
decision  height.  One pilot  commented  that  the 
flight director null  reference was insufficiently 
defined to  allow  precise centering  of  the  director 
bars. All pilots  thought  they  would have  felt  more 
comfortable  with  the  throttle  director  bar  located 
to  the right of the  display  in closer  analog with  the 
actual  throttle  position in the  cockpit - perhaps 
removed  from  behind the wing  of the  aircraft  symbol. 
No adverse comments were  received about  the 
three-cue  nature  of  the  director,  nor was the  fourth 
cue,  that is, the nozzle  director  in  the case of the 
basic  aircraft  mode,  criticized  for  other  than  its 
previously mentioned  display  format deficiencies. 

Decision  Height, Breakout,  and  Landing  Transition 

Some of the issues  associated with  the  longitu- 
dinal flight conditions  that prevailed  when  decision 
height was being approached were  discussed in 
conjunction  with  the  data  presentation  in  a previous 

section.  Pilots B and C particularly  expressed  concern 
over the  direction  of the longitudinal  velocity  vector 
at  breakout,  resulting  in  the  need  for  their occasional 
compensation  of  the  flight-director  commands  just 
prior to  reaching  decision height, generally  in the 
altitude  interval  of 61 to 30.5  m (200 to 100 ft). 
Pilot B was able to use the perspective  runway 
display  element  in  conjunction  with  the  inertially 
referenced  flightpath  angle  bar:  pilot C did  not 
evaluate  this  display  feature;  instead,  he  made his 
own  estimates  about desirable flightpath angles for 
the  existing  path  errors.  Emphasizing  the  importance 
of  this  consideration,  the  nature of the  blind  flying 
hood used  required the pilot to temporarily  remove 
his hands  from  the overhead throttles  in  order  to 
raise the  hood,  which even  in the frontside SAS 
mode  resulted  in essentially no  control  for  the  first 
second or so following  breakout.  This  might  be 
considered  in  a  rudimentary  way to simulate  a 
visual transition  delay  in  more realistic visibility 
conditions. 

Pilots B and C expressed  reluctance  at  reducing 
throttle  in  either  the basic  aircraft  or  backside SAS 
modes  just  prior to  or just  following  decision  height, 
for  fear of generating  excessive  sink rates. I t  was 
more  acceptable to  pitch over  in order to  correct 
downward, if necessary  in order t o  make the  touch- 
down  zone,  and  this  of  course was better  suited to  
the  frontside SAS control  mode.  Pilot A was more 
consistent  in  being  able to  pass through decision 
height  with  nearly  nominal  conditions,  which was 
also  reflected  in  more  consistent  touchdown  perfor- 
mance. He felt  that  30.5  m (IO0 ft) was  a comfort- 
able  decision  height for this simulated  instrument 
approach  task. AU pilots  stated  that  their  confidence 
in  the  aircraft  trim  state  at  decision  height was such 
that full concentration  could  be placed on  the 
maneuvering  requirements  for  landing,  without  need 
to  reference  parameters  in  the  cockpit or  to regain 
safety margins  while  also-maneuvering to  land. Such 
might not be  the case in the presence  of  adverse 
atmospheric  disturbances,  however, 

The  lateral “S” turn  requirement  during  the  land- 
ing  maneuver was thought  effective  in  making  the 
landing  transition  task  more realistic. Although the 
pilot  knew  that  some  lateral  maneuvering  would 
be  required  at  breakout, the  extent of the  correction 
required  was often  somewhat of  a  surprise,  even if 
it was  generally .in the same direction. A sipificant 
number  of  approaches  required  moderate  lateral 
maneuvering  efforts  from the pilot  in  order to  achieve 
the  touchdown  zone. 
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Pilots B and C, who  experienced  more varied 
dispersions at decision  height than  did  pilot A, 
considered  the 30.5-m (100-ft)  decision  height to 
be too low  for  operational use for  the  nominal  sink 
rates  characteristic  of  this  experiment.  The 7" 
approach angle, in  combination  with  the  approach 
speeds  used,  resulted  in  typically 8 sec  in  which to  
accomplish  the  landing  transition;  this was considered 
too  short  a time  under realistic circumstances, given 
the relatively  large  variations  in flightpath angle 
which  might  be  expected  before  and  after  breakout. 
These  reservations  regarding  decision  height  are 
primarily  related to  kinematics  and  may well be 
alleviated through  improvements in flight-director 
guidance  laws  and cockpit  display  features  (see 
appendix).  On  the  other  hand,  it was  felt  that  the 
aircraft  handling  qualities that were  represented  by 
the  three  STOL  control  concepts which  were eval- 
uated  were  satisfactory to deal  with conditions 
encountered  at  these  low decision  heights, a  finding 
consistent  with  the  research  of  reference 11. A 
thorough  study  of  decision  heights  appropriate  for 
powered-lift  STOL  aircraft  requires  more  detailed 
consideration of these  and other  factors. 

Landing  performance  did not always  meet 
with  the pilot's approval.  The  qualification  most 
frequently given was  insufficient  recent  practice 
with  the significantly different flare techniques 
required  for  each of the  three  STOL  control  concepts 
evaluated. 

Pilot  Opinion  Ratings 

Numerical  pilot  ratings, determined in accordance 
with  the  standard scale  shown in figure 54, were 
assigned to each  segment.  The results are  shown in 
figure 55; they  represent  the  range  of  ratings assigned 
by all pilots  on all evaluation flights for  the  three 
different  STOL  concepts  evaluated. To  complete 
the  data,  the single control  configuration,  which was 
evaluated during  the  initial  deceleration segment 
while  downwind,  received  consistent  ratings  between 
2.5 and  3.5,  primarily  determined  by  the less than 
optimum  lateral  performance  arising  from  navigation 
deficiencies in this  region. 

These data  require  interpretation  in  the  context 
of  the  atmospheric  conditions  of  the  tests,  the 
limitations  of  the  simulated  instrument  environment, 
the choice  of  reference  approach  angle,  and  the 
navigation and  runway  environment  employed.  It 
is noteworthy  that  the  approaches  flown  during  days 

of moderate  winds  which  employed  landing  flap 
settings  of 50" in  combination  with higher approach 
airspeeds  did not receive any  particular  comment  nor 
change  in  rating from  the  pilots,  lending  potential t o  
the possible use of this  procedure to  minimize pilot 
workload  and  fuel  and  airspace  requirements.2 
Further,  it should  be  emphasized that  the  compre- 
hensive nature  of  the  evaluation  task  presented  many 
aspects  for  consideration  in  arriving  at  a  pilot  rating, 
ranging  across  navigation,  guidance, control,  display, 
and  procedural  factors. In consequence, no significant 
differences  show  up  in the ratings  segregated accord- 
ing to  different  control  concepts. 

For  purposes  of  comparison  with  a  more  widely 
recognized terminal  approach  task,  the  pilots  con- 
sidered  the  task  of  this  experiment  to be more 
acceptable  (assuming  resolution  of  the  throttle 
director  oscillation  problem  in  the final straight 
segment)  than a conventional  straight-in ILS task 
flown on raw data,  without a flight director, in a 
CTOL  aircraft  at jet  approach  speeds. i t  was recog- 
nized,  however,  that  the  decelerating  curved  approach 
task was more  prolonged in terms of precision  perfor- 
mance  requirements in the  initial  stages of  the 
approach  than  the  conventional  situation.  The 
conventional  ILS  approach  involves  much less con- 
strained  terminal-area  maneuvers,  often  under  radar 
vectors,  and  involves  aircraft  configuration  changes 
which  are  normally  accomplished well in advance 
of reaching  decision  height. On the  other  hand,  the 
STOL  task  evaluated  here  was  considered  more 
demanding  than  the  conventional CTOL  task  when 
performed  with  the aid of a flight director,  although 

'Subsequent  to  this  main  investigation,  each  pilot was 
able to  bctter  evaluate  the  potential of this  procedure  during 
straight-in  approaches  flown  in  strong  quartering  headwinds 
of 25-35 knots.  Both  the  basic  aircraft  and  the  frontside 
speed-control SAS configurations  were  flown  on 7 O  
approaches,  using  landing-flap  angles  ranging  between 30" 
and 65". The  associated  airspeeds  were as tabulated in 
figure 27. All pilots  preferred  the  higher  approach  airspeeds 
for  their  more  nominal  sink  rates  and  reduced  durations  of 
precision  tracking,  as  well  as  the  reduced  decrab  require- 
ments  for  landing.  Although  the  control  blending  gains 
used  in the basic  aircraft  flight  director  were  not  well  tailored 
for  the 30' flap  configuration, all other  characteristics  of 
the flight  director,  including  the  programmed  trim  settings, 
appeared  satisfactory. As expected,  the  control  activity 
requirements  at  the higher  airspeeds  were  noticeably  reduced. 
Although  it  was  agreed  that  this  would  be a useful  feature 
during  straight-in or dogleg  approaches  in  very  strong  winds, 
its feasibility  during 180" turning  descending  approaches 
may  become  limited  by  the  descent  capability  of  the  aircraft 
and  the higher  bank  angles  involved  during the  initial  portion 
of  the  turn. 

- _" 
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ADEQUACY FOR  SELECTED  TASK OR AIRCRAFT DEMANDS ON  THE  PILOT 
CHARACTERISTICS I N  SELECTED TASK OR REQUIRED OPERATION' RATING 

PILOT 
REQUIRED OPERATION* 

~ ~- ~ 

Excellent 
Highly desirable 

Negligible  deficiencies desired  performance 

Fair - Some mildly Minimal pilot compensation required for 
unpleasant  deficiencies  desired  performance -~ -I ~~~~ 

Pilot compensation not a factor for 
desired  performance 

1 Good Pilot compensation not a factor for 
~~ 

Desired  performance  requires  moderate 
oilot compensation 

satisfactory without Moderately objectionable Adequate performance requires 
deficiencies considerable pilot compensation 

Very objectionable but Adequate  performance  requires  extensive 
tolerable deficiencies pilot compensation 

Is adequate 
performance 

1 
Deficiencies 

require 
improvement 

Major  deficiencies 
Adequate  performance not attainable with 

Controllability not  in question. 
maximum tolerable pilot compensation. 

Considerable pilot compensation is required 
for control 

Intense pilot compensation is required to 
retain control 

Major  deficiencies 

Major  deficiencies 

d l  

it controllable? 
,I aurlng some port~on 01 
I 

Pilot decisions 
Coo~eer-Hamer Ref. NASA TND-5153 

Wefinition of required operation involver designation of  flight Phase andlor 
rubpharerwith accompanying conditions. 

Figure 54.- Handling  qualities  rating  scale. 
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ATMOSPHERIC  CONDITIONS 61 APPROACHES 
IN 14 FLIGHTS 

0 MODERATE  WINDS 

0 GENTLE  SHEARS 

0 LIGHT  TURBULENCE 

BASIC 
SPEED  SAS SPEED  SAS A I R C R A F T  
FRONTSIDE BACKSIDE 

I N I T I A L   D E S C E N T   A N D   T U R N  

0 FINAL  APPROACH  TO  DECISION  HEIGHT 

TRANSIT ION  TO  V ISUAL,   FLARE  AND  LANDING 

Figure 55. - Range of  pilot rating assigned to  three  segments of  the  decelerating curved approach  task. 

the added  workload  did  not  manifest  itself  in  propor- 
tion to  the  number  of  additional  director  commands 
to  be  tracked. 

Of  greater  significance  was the  totally new  capa- 
bility, provided  chiefly by  the area  navigation  system 
and  the flight director, t o  perform  with  repeatable 
precision such  tight,  turning,  and  decelerating 
approaches to the  STOLport.  Although  the  body of 
experience  in  operating  this  aircraft is extensive 
(represented  by  more  than 2000 STOL  approaches), 
this capability  surpasses that which  has  previously 
been  possible  even  in  visual flight conditions.  This 

superior  performance is a measure of the  improve- 
ment  in mission  capability that can  be  achieved. The 
single control-related  feature  contributing  most to  
this  capability is the  trim  management  function  of 
the flight director, relieving the  pilot of the otherwise 
burdensome  task of  assessing  and determining  lift- 
drag  trim  strategy.  The  most  significant  navigation 
feature  providing the  tight  turning  approach  capa- 
bility is the  indication of the  appropriate  point  at 
which to  begin descent,  made possible by  the  three- 
dimensional  curvilinear  R-NAV  system  which was 
available. 
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VII. CONCLUDING REMARKS 

Summary of  Results 

A flight director  concept,  which provides a 
potentially feasible means  for  carrying  out  manually 
flown  decelerating  curved  approaches  in  a  powered- 
lift  STOL  aircraft,  has  been  developed  and  evaluated. 
The flight tests  were  carried out in  a realistic naviga- 
tion  environment,  and  included  various  STOL  control 
concepts.  Although the  handling  qualities  of 
powered-lift  STOL  aircraft  have  been  separately 
studied  in  previous  research,  the  objective  of  this 
work was to  consider  these  characteristics  in the 
context of an operationally  relevant  and  demanding 
terminal-area  curved  descending  approach  task,  such 
as may  be  required if these  aircraft  are to  realize their 
full potential. 

Data  have  been presented  describing  net  outer- 
loop  performance  achieved,  inner-loop  pilot  tracking 
performance  measures,  and  associated  control  utiliza- 
tion  characteristics  for  the  conditions  encountered 
during  these  tests.  The  initial  data  base  provided  by 
this  work  should  be  expanded to  include flight in 
more significant levels of  atmospheric  turbulence 
and  wind  shears, and  in  the  presence of failures in 
various  systems during  approach.  At  the same time, 
rectification  of  deficiencies  in the system  evaluated 
here  and  reviewed  later in this  section  should  result 
in  improved  performance  measures. 

Notwithstanding  these  limitations,  the following 
conclusions  are  drawn. 

1. Curved  decelerating  approaches  with  moder- 
ately  low  rollout  altitudes to  final approach  do 
appear to  be  feasible  for instrument flight operations 
in powered-lift  STOL  aircraft  from a pilot  acceptance 
point of  view,  when  provided  with an appropliate 
flight director. 

2. Incorporation of a  capability  such as the  one 
demonstrated  can,  in  addition,  lead  to  more effi- 
cient  terminal-area  operations in visual flight condi- 
tions  by  providing  guidance  for  curved  descent  paths 
and  configuration  trim  management. 

3 .  Differences  in  pilot acceptance,  workload,  and 
performance  are not widely  separated  for  the  various 
STOL  control  concepts  evduated,  at  least in the 
atmospheric  conditions  of  light  turbulence  and  weak 
shears  which  were encountered  by  the  three evalua- 
tion  pilots  who  participated in this  investigation. 

4. The  characteristics of  the navigation  environ- 
ment,  particularly  the  precision  with  which  the 
terminal-area  R-NAV  profile  can  be  located,  and 
the volume of coverage of  the MLS facility, will be 
important  factors  influencing  the  approach  profdes 
that  may  be  authorized. 

5. It was found  important  to  incorporate  an  auto- 
matically  computed  trim  position  for  the  third 
auxiliary  control,  primarily to  relieve the  mental 
workload  associated  with  evaluating  and  determining 
satisfactory  longitudinal  lift-drag  trim  states. While 
the flight director  performed  the necessary computa- 
tion,  the  pilot  had  merely  to occasionally reposition 
the auxiliary  control  in response to  a  displayed 
command,  and to monitor  the trim state  that 
resulted. 

6. Changing the pilot’s control  technique  from 
frontside  to  backside,  accomplished  by  blending  in 
a  multiloop flight director, did not  constitute  a 
difficulty  for  the  pilots. 

7. The  equivalent  of  Category 11 decision  heights 
and  performance  criteria  for  manual  powered-lift 
STOL  operations  may  differ  from  those now 
employed  for  CTOL  aircraft. However,  developments 
in  director  control  law  concepts  and  the use of new 
electronic  cockpit  displays  should  permit  this class 
of aircraft to  achieve  similar  performance  criteria 
as currently  demonstrated  with  CTOL  aircraft.  The 
handling  qualities  of the  three  STOL  control  concepts 
that were  evaluated  were  not  considered  limiting  in 
potentially achieving low decision  heights. 

Recommendations  for  Improvement 

Deficiencies  in the  system  employed  here  became 
evident  during the course  of  the  evaluations;  however, 
it  was not  considered  that  they  compromised  the 
main  conclusions of the  investigation.  The  major 
areas  requiring  improvement  are  reviewed  here. 

Navigation- It is significant that  discontinuities 
and  inaccuracies in the navigation  environment  did 
not prove  limiting  during  these tests from a  pilot 
acceptance  point  of  view,  once  sufficient  develop- 
ment  had  been carried out.  Yet,  more  accurate 
navigation during  the  initial stages of  the  approach in 
the region  requiring  reliance on enroute  nonprecision 
navaids  (VORTAC) is likely to  be  required from 
airspace control  considerations. An important area 
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for  improvement,  however,  and  one  peculiar to the 
system used here, is the lateral  resolution  and 
sensitivity employed  during  the final straight seg- 
ment. A separate  high-resolution  (about  twice that 
used here)  localizer track filter,  utilizing  some  com- 
bination  of higher-gain guidance  laws  and  greater 
sensitivity in  the lateral  tracking box dimensions, is 
warranted.  Although  the  lower values employed 
here usefully served to induce a lateral maneuvering 
task at  breakout, a  preferable  technique  would have 
been t o  incorporate  appropriate  random biases in 
the  electronic  centerline,  thus  providing  the same 
lateral  offsets  in  a  more  controlled  fashion. Use of 
a microwave landing  system  having  the  higher  resolu- 
tion  azimuth  characteristics  shown in Table 1 would 
also  improve  lateral  performance. 

A secondary  deficiency  in the navigation  system 
was its  inability  in  the TACAN region to provide 
adequate  groundspeed  and  wind  estimates while on 
the  downwind leg in the presence of  rapidly  changing 
bearing  and range geometries.  Although  this  partic- 
ular  problem is unique to  the navigation environment 
used for  the  tests,  it  highlights the general need  for 
accurate  groundspeed  (and  wind)  measurements 
in  order  to  support  constrained  terminal-area 
approaches  by low-speed aircraft. 

Flight director control laws- Further  development 
of  the  flight-director  control  laws  for  the  STOL 
configuration is required  in  order to  suppress the 
oscillatory  tendencies noted, particularly  in  the 
throttle  mode.  Some  improvement  can  be realized 
by gain adjustments  and  changes to  the vertical 
sensitivity of  the  tracking  box  as was demonstrated 
in  reference 11,  but a requirement was also  identified 
for  a  more  rationally  scheduled  control law that 
constrains  corrections  in  flightpath angle appropriate 
to  both  the existing  path  error  and  the  proximity 
of the  aircraft to  decision  height.  These  latter  com- 
ments  apply  particularly to  guidance laws for glide- 
path  control;  however,  the  same  requirements  exist, 
though less severely,  for  lateral  guidance. An alter- 
native  glidepath  control  law  that  meets  these  require- 
ments was developed  subsequent t o  this  investigation 
and was  evaluated  briefly  in  flight.  The  details  are 
reported  in  the  appendix. 

Display and control- Although  the  basic  display 
format  and  symbology received little  criticism  during 
the  tests,  the  deficiency  of  the  central  digital  window 
in  adequately  displaying  errors  in  nozzle  position 
from  computed  trim was noted.  The  implication is 
that a fourth  director  cue  for  trim  control  positioning 

may  be  quite acceptable, if properly  implemented. 
With developments  in  colored  electronic  displays 
proceeding  as  rapidly  as  they  are,  it  would seem that 
satisfactory  presentation  of the display  features 
necessary for  this  type of operation will be possible 
at reasonable  cost. 

An associated  area of  criticism  was the particular 
layaut  of  thrust  (throttle)  and  thrust-vector  (nozzle) 
control levers, and suggests the  importance  of  judi- 
cious design in the pilot’s propulsion  system manage- 
ment  controls.  The  manipulation  of  these  two  con- 
trols  did  not  prove  unacceptable  in  the  conditions 
of these  tests  (for  the basic  aircraft  mode  where it 
was required), but it was felt  that  more  appropriately 
designed propulsion  system  controls,  perhaps  inte- 
grating both  functions  at  the  same  control  handle, 
would  warrant  consideration. 

Deceleration optimization- In this  investigation 
the  pilot  actions necessary t o  accomplish  deceleration 
had t o  be  initiated  by  the  pilot  in  compliance  with a 
standard  procedure suggested on his  approach  profie 
chart.  Since  the  copilot  occasionally  had to  remind 
the  pilot  of  the  need  for a further  configuration 
change,  it  might  be desirable to  incorporate a prom- 
inently  located  alphameric  display t o  annunciate  the 
currently  appropriate  aircraft  configuration.  This 
philosophy  would  be  in  the  direction  of  wholly 
computer-stored  approach  and  landing  procedures. 
In reality,  however, the  locations  of  these  configura- 
tion  change  way  points  were  often  modified by  the 
pilot as a  result  of  his own perception  of  ambient 
wind effects  (and  sometimes  other  factors  reflecting 
how  conservatively  he  might wish to carry out  the 
approach). More  effectively, if an  adequately reliable 
estimate  of  the wind  profile  during  approach  were 
somehow  provided to  the  system,  then  the  location 
of  the  nominal  points  for  configuration  change 
actions  could  instead  be  computed,  resulting  in 
more  rational  energy  management  along  the  approach 
profile. This could  lead to  improved  efficiencies in 
fuel consumption  as well  as reduced  potential  for 
control  problems arising -from inadequate  anticipa- 
tion  of  wind  effects by   the  pilot. 

Approach profile variations- Although  prestored 
R-NAV profiles  were  employed  in  this  flight  experi- 
ment, use could  be  made of some  procedure to 
optimally  synthesize  approach  profiles  from any 
point  in  the  terminal  area,  such as the  one  proposed 
in reference 6. Similar guidelines to  those evolved 
here  governing the pilot’s use of  controls,  and  defmi- 
tion  of an acceptable  approach  procedure,  would 

71 



have to  be  established  in  order to limit the range of 
acceptable  approach  trajectories. The results of this 
investigation could  be  applied  directly to  this  more 
flexible situation to  the  extent  that  the futed paths 
flown  here  lie within  the range of acceptable  synthe- 
sized  trajectories. 

Application to Other  Aircraft 

The  two  major issues  involved in  curved- 
decelerating  STOL  approach  profiles,  such as were 
investigated  in this  work, are  navigation  and  control. 
The results of  this  work  have  suggested that given 
acceptable  navigation, the  control  considerations 
associated with  the  particular  powered-lift  aircraft 
configurations  used  for  these  tests  show  potential 
for  operational  acceptance on  the profdes  tested. 
These control  considerations were presented  in 
an  introductory  section as being  common  to all 
powered-lift  concepts  (including  V/STOL  aircraft) 
in  varying  degrees, and  are  most significantly  mani- 
fested  by the  trim  management  problems associated 
with  the  redundant  control  peculiarities. However, 

the  particular  means  of  dealing  with  these  require- 
ments  are  strongly  configurationdependent. 
Similarly, the  importance of appropriately  schedul- 
ing the changeover  in  control  effectiveness  during 
conversion to  powered-lift,  and  of  tailoring  the 
deceleration  schedule  in  accordance  with  inherent 
lift,  drag,  and  thrust  changes, also require  specific 
configuration-dependent design.  Nevertheless,  some 
of  the  major  control  considerations  likely to be  of 
general concern  to  the  pilot  for  this  kind  of  operation 
have  been identified.  At  the  other  end  of  the  scale, 
it is considered that operations on these  approach 
profiles  with  low-wing-loading  STOL  aircraft, or 
RTOL  aircraft,  present  substantially fewer control 
considerations,  and  mainly require an  adequate 
navigation,  profde  computation,  control  authority, 
and  cockpit  display  environment  for  their  opera- 
tional  implementation. 

Ames  Research  Center 
National  Aeronautics  and  Space  Administration 

Moffett  Field, California 94035, July 29, 1980 
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APPENDIX 

DESIGN AND EVALUATION OF ALTERNATIVE  FLIGHT-DIRECTOR  CONTROL LAWS 

Introduction  and Review of Deficiencies 

~Ithough the flight-director  laws  which  were 
employed  for  the  work  reported  in  the  body  of 
this report provided the guidance  required for  the 
investigation,  they were  empirically  developed  in  a 
fHed-base  piloted  simulation without  reference to 
any analytical  design  procedure,  such  as  the  one 
proposed in reference 19. Although  certain  objec- 
tionable  deficiencies  were exhibited by  the  control 
laws,  these  deficiencies  were tolerated to  the  extent 
that  they were  considered not  to significantly  com- 
promise  the  major  objectives  of the flight investiga- 
tion. These  objectives  were  oriented  toward  systems 
integration  and  operational feasibility considerations 
in the real flight environment,  rather  than addressing 
specific  design requirements  for  the  many  subsystems 
involved.  Nevertheless,  an effort to  improve  the 
control laws and  to  rectify  some  of  the deficiencies 
exhibited  by  the  glidepath  tracking  control laws in 
the STOL approach  configuration was undertaken 
subsequent  to  the  flight-test  program;  these  alterna- 
tive control laws  along  with  some  limited flight 
evaluation  data are reported  here. 

The  oscillatory  nature  of  the flight director-pilot- 
aircraft  closed-loop  glidepath  tracking  system  was 
illustrated  in  figure 38, and  pilot  comments on this 
objectionable  feature  have  been  discussed in the main 
body of  this  report. A more  severe example of  this 
problem as experienced  by  pilot A is shown  in 
figure 56. This  characteristic was particularly 
apparent  in  the basic  aircraft  and  backside  speed- 
control SAS configurations, where throttle is used 
to  control  glidepath  (the  backside  control  technique). 
This problem  can arise when the pilot is required to 
provide  excessive compensation, usually in  the  form 
of lead  generation  or t o  adjust  his gain precisely,  in 
order to  rectify  dynamic  deficiencies  in the  con- 
trolled  element - in  this  case the  throttle flight- 
director  bar. 

An additional  deficiency  in the  gbdepath  control 
laws was the  absence of suitable gain scheduling  with 
height, in effect xequiring the  same  performance  at 
all altitudes  during  approach.  (The  control laws  were 
based on linear,  not  angular,  deviations  from  the 
desired glide slope.)  This implementation  may  be 
appropriate  from  the  point  of view of  providing 

time-invariant  gains  and  dynamics  for  the  closed- 
loop  tracking  system,  a design approach  particularly 
suited to  an automatic  pilot. However, the  suitability 
of  this design approach  for  manual flight control 
can  be  seriously questioned since  there is ample 

n 100 r 

Figure 56.- Glidepath  tracking  characteristics, basic 
aircraft  configuration.  Throttle  control laws of 
main  investigation - Pilot A. 
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evidence to suggest that  the  human  pilot  perfomls 
very well using  a  scheduled  control  law,  at  least to 
the  extent  that  the  effects  of  changing gains  are not 
great. In the first place, the pilot  routinely  carries  out 
visual approaches,  even to precision landing,  that 
are  essentially  based on his perception of  angular 
(not  linear)  error  from  the desired  glide  slope. 
Secondly,  conventional  instrument  approaches,  both 
with and without flight director  assistance,  have  been 
conducted  routinely  for  many  years using the same 
(but  more precise)  angular  deviation information 
obtained  from  the  instrument  landing  system. 
Although the linearly  increasing  sensitivity of 
angular error t o  linear  displacement, as touchdown 
is approached,  inevitably  requires  some gain compen- 
sation,  this  problem  appears to  become  significant 
only at very low  altitudes, as  reflected by  the  incor- 
poration  of "beam  softening"  in  CTOL  Category I1 
flight directors  in  the region 60   to  30 m (200 to  
100 ft).  Despite the  fact  that  these  glidepath  control 
laws,  based on perceived or measured  angular  devia- 
tion  from the desired glidepath,  may  reflect  the 
particular  capabilities of  their respective  sensors,  a 
useful  and  significant  result of  this  design  approach 
is to  rationally  schedule  glidepath  performance 
toward  the  standards  required  at decision  height, 
hence  avoiding  unnecessarily  high  pilot  workload 
during  early  stages  of the  approach. 

In the  work  reported  in  the  body  of  this  report,  a 
limited  amount of gain scheduling  was  incorporated 
(see figs. 22  and  23,  and  table 3) in an attempt to 
alleviate the  initial  ghdepath  performance  require- 
ments and to  obtain  improved  perfonnance  at  lower 
altitudes. However, this  scheduling was not based on 
angular  glidepath  deviations  and was proved to  be 
ineffective,  in  fact,  contributing to  the oscillatory 
tracking  characteristics  noted earlier. Also lacking 
with  these  control  laws  was  any  ability to  constrain 
corrections  to  the glide  slope  as  decision height was 
approached;  in  order t o  prevent  excessively  shallow 
or  excessively steep  flightpath  angles  at  breakout. 
This was identified  by the pilots as an  important 
consideration  which  sometimes  resulted  in  their 
altering  their  response to  the flight-director  control 
laws  in  this  region in order  to prevent  such  undesir- 
able conditions. 

The  data  and results reported in the  body  of  this 
report  were  obtained  using  flight-director  control 
laws  with the deficiencies just reviewed. A subsequent 
brief effort to  develop  improved  control  laws is 
reported  in  this  appendix.  The  engineering basis  for 
the  control law is first  described,  followed by a 

rationalization  of the design with  modern  manual 
control  theory.  Limited  flight-test  results are reported 
along  with  pilot  comments on  the effectiveness 
and  suitability  of  the  control laws. 

Description of Alternative  Control Laws 

A new  glidepath  tracking  control law  was  devel- 
oped that emphasized  angular  rather  than  linear 
deviations  from the desired glide slope,  thereby 
embodying  inherent gain scheduling  with  range or 
altitude to  the  electronic  glidepath  intercept  point. 
As will be  described, gain compensation is included 
that prevents  excessive  sensitivity at  low  altitudes 
while  also  serving to  constrain angular corrections 
near  decision  height to  practically  desirable  values. 

The  control law commands  a  corrective  flightpath 
angle Ycmd such  that 

Y c m d - Y = 0  

where Y is the  instantaneous  inertial  descent angle 
of the  aircraft  and 

In this  expression, Yo is the desired  nominal glide- 
slope  angle, -7" for  this  investigation,  and 0 is the 
depression  angle  (negative)  of  the  electronic glide- 
slope  intercept  point  below  the  horizon, as measured 
by the MLS glide-slope  receiver. (This particular 
mechanization  does  not  lend itself directly to use 
during  the  descending curved  segment  of the 
approach  profde.) A control  law gain, K of 

3.6  deg/deg was chosen, so that,  for  example, an 
error  of 1" below the glide  slope is corrected  by  a 
flightpath  angle  which is initially  3.6"  more  shallow 
than  the  nominal  path. This control law  represents 
the  exponential  correction  of  a glide-slope error of 
(Yo - 0) degrees  within  a  parametric  distance  which 
is I/KA of  the  remaining  distance  to  touchdown. A 
limit  of *4" is placed  on  the  corrective  flightpath 
angle relative to  the nominal  path, KA (Yo - p), to 
maintain  flightpath  angle  and  associated  control 
input  excursions  within  acceptable  bounds,  and to  
reflect the probable  minimum  requirements  for 
satisfactory  control  in  rough air conditions  that are 
proposed  in  reference 4. 

To reduce  the  rapidly  increasing sensitivity  of 
anguiar path deviation  per  unit of linear  path  error 

AY ' 

Y 

Y 
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'(I a 
I which  occurs  at  low  altitudes,  and to constrain  the 

amount  of  commanded  path  correction  nearing 
decision  height, the  control law  gain K A  was 

scheduled  with  computed  slant  range to touchdown 
in  the following manner: 

Y 

R >R1 
KAY = 3*6 

KAY 

KAY = 

R1 > R  >R1 = (3.6) ( R / R , )  (A3) 
t 
I 
Y 

R z  > R  O0 

At ranges less than RZ, the  control  law gain of 1.0 
commands  corrections  that will direct  the  longitu- 
dinal  velocity  vector Y toward  the  electronic glide- 
slope  intercept  point,  hence recognizing the changing 
glidepath  control  objectives  when  approaching 
decision  height that were  reflected  in  the body  of 
this  report.  In  the  limited  evaluation of  these  con- 
trol laws  contained in this  appendix, R z  was  chosen 
as the range  corresponding to  the decision  height 
of  30.5  m (100 ft) with the result that gain reduc- 
tion on K A  begins at an altitude  of 110 m  (360  ft). 

This gain scheduling results in a stationary  control 
law  at  ranges  beginning at R1 to  the range corre- 
sponding to decision  height. 

The  control law just described  pertains  only to 
the  outer  loop glidepath tracking  requirement  and is 
equally  applicable to  the  frontside or backside 
glidepath control  techniques  that  were  evaluated 
in  the  main  body  of  this  report.  Since  the  problems 
with  the original control laws  were  more pronounced 

Y 

for  the  backside  technique, using throttle to control 
glide slope, it is this  application  which is emphasized 
here.  Application  of  these  control  laws to  the  front- 
side control  technique  which uses pitch  attitude 
for  glidepath  control is described in a  following 
section. 

Incorporation  of  the basic  glidepath  control 
law (Al)  into  the  throttle flight director involves 
feeding  back  an  inner  control  loop  consisting  of 
washed-out  throttle  position, as shown  in figure 57. 

%$ST 
~ T F D = K ~ '  (Y,,d-Y)- s + ( 1 / T w o )  (A4) 

where KT and K6 are  display  sensitivity  gains  per 

degree of  flightpath angle error  and  per  unit  of 
throttle  displacement, respectively. The  control 
law  calculates  for  the  pilot  the  amount  of  throttle 
input necessary to null  any error  from  the  com- 
manded  flightpath  angle.  The  long-term  throttle 
control  effectiveness  for  glidepath  angle  changes 
(modified to  account  for  the  effect  of wi-nds) deter- 
mines the  ratio of  display gains K K , while the 

washout  time  constant TWO reflects  the  aircraft 
time  constant  for  glidepath response to  throttle, as 
modified  by  the engine  response  characteristics. 
Any control law error,  presented as a  flight-director 
command, can  be  immediately  nulled  with  a  throttle 
position  input scaled  in terms of the desired  inertial 
flightpath angle  change.  This  initial  control  input 
washes out  to be  replaced in a  complementary way 
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Figure 57.- Closed-loop  glidepath  tracking  system  using  throttle  control. 
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with  the  developing  flightpath  response. This 
control law was implemented  directly as  shown  in 
equation (A4), after  modifying  the vertical  comple- 
mentary  filter  to  a  third-order  mechanization, 
thereby  eliminating the  effects  of  any bias in the 
normal  accelerometer on  the inertial  flightpath angle 
used  for  feedback. Use of  the  inertially  referenced 
flightpath  angle,  requiring  a  relatively  accurate 
measurement  of  groundspeed,  ensures  proper 
accounting  for wind  effects.  Corrections  were  also 
employed to account  for  the  conical  nature  of  the 
MLS elevation signal, the origin of which was offset 
from  the  runway  centerline,  hence  ensuring  con- 
sistency  in all parameters  at  low  altitudes. 

Analysis of Throttle  Flight  Director  Dynamics 

The  engineering  approach to  the  throttle flight- 
director  control laws just  described results in  nearly 
constant gain dynamics  for  the  controlled  element 
6TFD/6T in  the  frequency range  of  pilot control. 
This  reflected  the  preference  expressed  by  the  pilots 
for  immediate  nulling  of  any  displayed  error  by  a 
consistent  and  predictable amount  of  throttle lever 
input,  frequently  accomplished  in  a  step-like  manner. 
After  nulling  an error,  attention  could  be  temporarily 
diverted to  other areas of  the  cockpit  or display 
before  the  next  correction was  required. A disadvan- 
tage of  these  controlled  element  dynamics is their 
sensitivity to  spurious  higher  frequency  pilot  control 
inputs as  well  as to  atmospheric  disturbances  and 
system  noise.  (The abnormally  high wing  loading  of 
powered-lift  STOL  aircraft  serves to effectively fiter 
the  aircraft  response to vertical  gust  encounters.  Still, 
the  dynamic  analysis  presented  here  should  be 
extended  to  include  a  formulation  of  the  effects of 
atmospheric  disturbances,  including  windshears.)  In 
the  implementation  employed  here,  first-order 
smoothing  at 5 rad/sec was applied to  the displayed 
throttle  flight-director  bar  to  suppress  these  effects 
with  satisfactory  results. 

The  design approach  just  outlined  departs  some- 
what  from  generally  accepted  manual  control  display 
theory  for  flight-director  systems that usually  recom- 
mends  a K / s  shape  for  the  controlled  element in 
the  bandwidth of pilot  control,  typically  0.1  to 
10 rad/sec. The  rationale  for  this  theory is dis- 
cussed in reference 16  and in greater  detail  in refer- 
ences 19-21;  briefly,  however,  it  stems  from  a large 
body of experimental evidence that shows the  pilot 
always attempts  to equalize  the  controlled  element 

dynamics to  a Kls shape  at  the crossover frequency, 
providing  lead  or  lag  as  necessary,  or  preferably 
(it is assumed)  acting  as  a  simple  amplifier  of  appro- 
priate gain.  (Considerations  associated  with  the 
pilot's transport  time lag, due to neuromuscular  and 
scanning  delays,  are  ignored  for  lower-frequency 
operation.)  Provision  of  controlled  element  dynamics 
that  maintain  a simple K or K/s  form  over  a  wide 
frequency  range, say  0.1 to  10 rps, allows the  pilot 
t o  adjust  system  bandwidth  without  varying  his 
own  dynamics,  except  for  gain,  in the process. 
Alternatively,  controlled-element  dynamics  which do  
not  exhibit  simple K or K/s  forms  in  the  frequency 
range of  control usually  result  in the pilot's locating 
the  frequency  of  operation where he can  most easily 
provide  whatever  compensation is necessary to 
produce  the K/s shape, while  also, it is hoped, 
achieving the necessary,  standards  of  performance. 
However,  this situation usually results in  poorer 
pilot  ratings  and  possibly  unsatisfactory  control 
characteristics,  such as the  tendency  for  oscillatory 
behavior  exhibited  by  the  control laws of  the  main 
investigation.  This  short discussion of  manual  control 
theoretical  factors is included to provide  a  basis for 
documenting  and  interpreting  the specific flight- 
director  control laws  employed  in  the  course of 
this  investigation. 

An analysis of  the  controlled-element  dynamics 
for  the  alternative  throttle  flight-director laws 
described  in  equation  (A4),  carried  out  with  reference 
to  their  equivalent  closed-loop  small  perturbation 
formulation  illustrated  in  figure 57, produces the 
expression: 

The  engine  response is modeled  as  a  first-order  lag 
with t h e  constant T,  and  the  unit  of  throttle dis- 
placement is chosen as equivalent  percent  engine 
rpm.  The  aircraft  response  in  linear  glidepath  error 
rate, 8, to  a  unit change  in  engine  rpm is simplified to  

-Z'$ 

where Z, represents  the  damping in heave due  to 
changes  in  vertical  velocity.  This is a valid approx- 
imation  for  the  backside  speed-control SAS, or  for 
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1 
the case of the basic  aircraft  where the  trim nozzle f angle is not  too large, hence  resulting  in  negligible 

!I 

! speed  changes to  throttle  inputs. 
i The results of this analysis  are shown  in figure 58, 

illustrating that  the  control law is nearly stationary 
with  reducing  range to  touchdown.  The gain schedul- 

avoiding  adverse effects  that  would  otherwise  occur 
>i at  the  lowest  altitudes  near  decision  height. Also 

i ing  discussed earlier appears t o  be  effective  in 

i 
% shown is the  effect  of  a 0.2 sec  first-order  smoothing 
’7 function  which was  applied to the  displayed  director 
:i element  in  the  course  of  implementing  these  control 

laws for  evaluation.  This  was  required to suppress 
some of the pilot’s high-frequency  control  inputs 

I that were  typically  uncorrelated  with  a  director 
command signal. 

i 
i 

1 

For  purposes  of  comparison  and  documentation, 
similar  representations  of  the  throttle  director  bar 
dynamics  are  shown in figure 59 for  the  backside 
flight director  employed  in  the  main  body  of  this 
report,  and in figure 60 for  the  throttle  flight-director 
control laws reported in reference 16, which  provided 
the basis for  those  flown  in  reference 11, also shown. 

Application to Pitch  Flight Director 

The  glidepath  control  law  described  in  equa- 
tions (Al), (A2),  and  (A3) is employed in a nearly 
identical  way  when  pitch is used for  glidepath  control 
(the  frontside  control  technique). Because the  test 
aircraft was rather  highly  augmented (with  both  a 
rate-command  attitude-hold  pitch SAS and an auto- 
matic  speed-control  system,  the  analysis  of  the 
pitch flight director  characteristics is quite  simple. 
Analogous to  equation (A4), the  pitch flight director 
control law is 

Kg& 
‘PFD = K’Y(Ycrnd - ’) - + (1 p W O )  (‘47) 

where, as before, Kr and Kg are  display  deflection 
gains  per  unit of flightpath  angle  and  attitude  change, 
respectively. To preserve  “face  validity,” a  term 
employed in references 19 and 21 that refers in this 
case to  the real pitch  attitude change  corresponding 
to  a command  displayed  by  the  pitch  director,  the 
gain KO should  be 1’ of  pitch-bar  displacement, 
measured relative to  the underlying  attitude scale, 
per  degree of  pitch-attitude  feedback.  Consequently, 
the gain Kr represents  the inverse of the  steady-state 
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Two = 3.0 sec 

Figure 58. - Controlled  element  dynamics  for  alter- 
native throttle  director  control laws. 
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Figure 59:- Controlled  element  dynamics  for  throttle 
flight  director  of  main  investigation. 
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Figure 30. - Throttle flight director  implementation  for  study of references (1 1) and (16). 

inertial  flightpath angle  change  resulting  from  a 
unit  change  in  pitch attitude 

where  the  effect  of  winds  that  may  be  a large  per- 
centage of  the  approach airspeed is contained  in  the 
factor VA I Vg. 
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The  closed-loop  formulation  of  the  control laws 
for  the  pitch  director is obtained  from figure 61, 
resulting in the  following  expression (analogous to  
eq. (A5)): 

With  a  perfect speed-control SAS, the  aerodynamic 
flightpath  angle  response  of  the  aircraft to a  pitch- 
control  input is nearly  first-order: 



'?air - (s) = ss 
Ae (Sl-Z,) -I 1 deg/deg , Ayair = - 

57.3 d 

VA 

body  of  the  report. A value of 1.0 was  used for 
this analysis, with VA = V 

Finally, the relationshlp  between  the  director 
feedback  parameter t9 and  the  actual  pilot  control 
input Fs is approximately 

g: 

where, as before, Zw represents  the  effective heave 
damping  of the aircraft but now includes  the  augmen- 
tation  provided  by  the  chokes.  The  factors  affecting 
the value  of lATair/AeI were  discussed  in the 

ss 

for  the high-gain attitude SAS that was  employed 
on the  test  aircraft. 

The resulting dynamic  characteristics  of  the 
controlled  element GPFD/F~ are  shown in figure 62.  

AUGMENTED  AIRCRAFT 
""" 

57.3 d 
LIMIT R 

Figure 61 .- Closed-loop  glidepath  tracking  system  using  pitch  attitude  control. 

(At ALTERNATIVE  CONTROL LAWS, R = 6,100 m (20,000 ft )  
(B) ALTERNATIVE CONTROL LAWS, R = 933 rn (3,063 f t )  
(C) CONTROL LAWS OF  MAIN  INVESTIGATION 

A B  
-2- " --. " c 

I I I I 
1 2 5 10 

FREQUENCY, radhec 

Figure 62.- Controlled  element  dynamics  for  pitch  flight  director. 



As expected; it exhibits K/s  characteristics  over  a 
broad  frequency range with  the same minor varia- 
tions  with  reducing range to  touchdown as exhibited 
by  the  nearly  constant gain throttle  director.  For 
the  pitch  director, no final  smoothing was employed 
on the  displayed  element,  the  implementation used 
being  exactly as  represented  in  equation (A7). For 
comparison, the  dynamic  characteristics  of  the  pitch 
flight director  employed in the main  investigation 
are  also shown  in figure 62. 

Pilot Evaluation of Improved  Control Laws 

The  throttle  and  pitch-flight  director  control 
laws just described  were implemented  and  evaluated 

in  the fured-base simulator  and  briefly  in flight. 
Some  limited  flight-test  data  for  the case of  the 
throttle  director  supporting  the  backside  glidepath 
control  technique are  presented  here,  along  with 
pilot  comments  regarding  the  characteristics  and 
suitability of both  the  throttle  and  pitch flight 
director based on simulator  an?  flight  evaluations 
in  smooth  and  moderately  turbulent  atmospheric 
conditions. 

The  results of  a  limited  flight  evaluation of the 
alternative  throttle flight director  control laws 
of equation (A4) are  presented in figures 63-66. 
Twenty-two  straight-in  approaches were  carried out 
using  the basic  aircraft  configuration, but  unfortu- 
nately  in  uniformly  smooth  atmospheric  conditions. 
The  time  history  data  of figure 63 show  none  of  the 
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(a)  Pilot A. 

Figure 63. - Sample  approach  time  histories  for  three  pilots using  improved  throttle  director  controI laws. 
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Figure 63.- Continued 

oscillatory  character  seen  in  figures 38 or 56, and 
the histograms  of  performance and  control measures 
(figs. 64 and 65) show  noticeably  tighter  control 
than  the  equivalent  data  presented  earlier.  The 
conditions  existing  at decision height, measured in 
terms  of  combinations  of  vertical  position  (guidance) 
errors  and  longitudinal  velocity  vector  are  shown  in 
figure 66 and  are to  be  compared  with  the  data 
previously  presented  in  figure 50. The  flight-test 
data are  insufficient to  demonstrate  the  effectiveness 
of the scheduled  control  law  gain K A  which was 

employed  in  order to  rationally  constrain the correc- 
tive flightpath  angle  approaching  breakout, since 
atmospheric  disturbances  were  minimal  and  the 

Y 

pilots  were  briefed to  accomplish the  best  tracking 
possible during  the  latter stages of the  approach. TO 
obtain  data  under  a wider  variety  of conditions, 
50 approaches  were  carried out in a  futed-base 
simulator  employing  both  moderate  turbulence  and 
intentional  glidepath abuses;  these data are  also 
presented  in  figure 66. Although the simulator  data 
clearly tend to confirm  the  theoretical  objective,  the 
real effectiveness  of  the design feature  requires  more 
extensive  flight  evaluation. 

During the  limited flight evaluation of these 
alternative throttle flight director  control laws, and 
during  the  course  of  gathering  the  simulator  data, 
pilot  commentary  indicated very little  tendency 
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Figure 63.- Concluded. 

toward  oscillatory  glidepath  tracking  characteristics. 
The  pilots were not aware of  providing  any  compen- 
sation  while  tracking the  throttle-director  bar,  and 
were  able to easily  null the  flight-director  command 
bar without  overshoot, using  what  were frequently 
step-like  throttle  inputs, as  can  be  seen  in  figure 63. 
Once  a  correction was made,  attention could tem- 
porarily  be  diverted to  other display-scanning  tasks 
without large errors  developing  in  the  throttle- 
director bar.  However, the increased  higher-frequency 
activity  in the display  was noted, and  this  was 
typically  ignored.  During  one  evaluation flight 
conducted in moderate  turbulence, and  in the course 
of the  many  simulated  approaches  with  moderate  tur- 
bulence,  the slightly greater  activity  of  the  throttle- 
director  bar  did not  present  any  difficulty. 

To better  understand  this  apparently  clear  prefer- 
ence  for  constant-gain  flight-director  dynamics,  the 
K / s  control laws of  reference 16, shown  in  figure 60, 
were implemented  and evaluated  in the  fued-base 
simulator.  It was found  that these  dynamics  exhibited 
the same  oscillatory  tendencies that characterized 
the  main  effort,  but  on  a  reduced scale. Nevertheless, 
the  pilots  commented  that it was difficult to  set and 
leave the  throttle while other display-scanning  tasks 
were  carried  out (an important  consideration  for 
multichannel  control  tasks),  and that some  lead 
appeared  necessary  in order to  null the display. 
The  most  probable cause  of the  difficulty  with 
these  dynamics is considered to be the  characteristics 
of the  control  manipulator,  a  throttle lever that  had 
no physical  centering  characteristics  and  because  of 
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Figure 66.- Combinations of  glidepath  error  and  flightpath  angle  at  decision  height;  flight  test  and  simulation 
data. 

its  overhead  location  provided  only  limited  proprio- 
ceptive  cues  of  its  position relative to  trim.  In  addi- 
tion,  a significant  hysteresis between  the  throttle 
lever  and the engine  fuel control  unit,  amounting  to 
an  equivalent  of 1% rprn, probably  contributed  to 
the  steplike  nature  of  throttle  control  inputs  that 
seemed to  generally  characterize  the  pilot  technique. 

There is some  theoretical basis for  these  empirical 
results  in  a  pilot  model  discussed  in  reference 22 ,  
which  asserts that  in  tracking  tasks,  such as nulling 
flight-director  errors,  the pilot’s equalization  capa- 
bilities are  obtained as the  result of a  proprioceptive 
feedback  loop  in  which  the  rate,  the  displacement,  or 
the integral  of  displacement of the  manipulator is 
the  primary  sensed or derived quantity.  The  latter 
two  quantities  imply  that  the  pilot  has knowledge 
of the  manipulator  null  or  trim  position  at all times. 
In  particular, it has  been  shown  in  reference 22 that 
the required  pilot  equalization  for K dynamics 
(roughly,  a  first-order  lag)  can  be  obtained  by  utiliz- 
ing the proprioceptively  sensed  rate  of  change of 
manipulator  position.  For K / s  dynamics,  sensed 
manipulator  displacement  itself is utilized to  obtain 
the pure gain equalization. For K/sz  dynamics,  the 

integral  of  sensed  manipulator  displacement is used 
to  yield the required  first-order  lead  equalization. 
Thus,  any  controlled  element  that has the  form 
K/sn in the region of crossover will, in  terms of the 
model,  require  proprioceptive  “knowledge” of  the 
equilibrium  manipulator  position  when n > 0. For 
y1 = 0 (pure gain dynamics),  however,  only  manip- 
ulator  rate  information is necessary.  The  overhead 
throttle used  in the simulator  and flight experiments 
described here possessed  characteristics  that  made  the 
proprioceptive  acquisition  of an equilibrium  position 
(corresponding to  trim  approach  power)  somewhat 
difficult.  However,  rate  information is more  easily 
obtainable,  and  this may  explain  the  pilot  prefer- 
ences  for  the K as  opposed to  the K/s “effective 
vehicle”  dynamics for  the  throttle  director. 

These  observations  and  tentative  conclusions 
require  additional  measurement  and  more rigorous 
interpretation  that are beyond  the  scope of this 
report. Nevertheless,  various  considerations  in the 
design of  throttle-lever  characteristics,  vehicle 
dynamics,  and  flight-director  control laws  have been 
highlighted  in  this  limited  consideration  of  improved 
throttle-director  characteristics. 
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The  improved  pitch flight director  for  frontside 
glidepath  control  was  also  evaluated  in flight and  in 
the  simulator  in calm and  moderately  turbulent 
conditions;  it  too received  similarly  favorable  com- 
ments.  The  conformity  with  existing  manual  control 
theory regarding the  suitability  of K / s  dynamics 
apparently  stems  from  the  excellent  centering  and 
linear  force-gradient  characteristics of the pilot's 
control  column.  It was felt  that  the  dynamic  charac- 
teristics of the  improved  control laws  represented  a 
significant  improvement  over the  pitch-director laws 
that were employed  in  the  main  body  of  this investi- 
gation.  Pilot A, who was most  inclined to  develop 
oscillatory  tendencies  during the main  investigation, 
had no difficulties  with the improved  laws. He was 
generally  able to  quickly null moderate  errors  with- 
out  appreciable  overshoot,  even  in  turbulence. 
Consequently, it would  seem that these  control 
laws  show  good potential  for  minimizing  the  pitch- 
control  activity,  as  measured  by  pitch  rate, that has 
been  identified in the main body  of  this  report  and 
elsewhere as being  a  possibly  limiting  factor in the 

use of  this  glidepath  control  technique  by  powered- 
lift  STOL  aircraft. 

The  alternative  flight-director  control laws 
described in  this  appendix  showed  significant 
improvement over the  control laws that were  used 
in  the  main  body  of  this  report. As was demon- 
strated,  these  control laws conformed to  the basic 
principles  of  modern  manual  control  theory,  with 
the significant  variation that  the  pilots  strongly 
preferred  throttle-director  dynamics  that were  very 
nearly  a constant gain over the  frequency range  of 
control,  a  finding  thought  to  result  from  the 
particular  characteristics  of  the  throttle-control 
lever,  as well as the  shared  multichannel  aspects of 
the  control  task.  Although  the flight evaluations 
were  limited  and  were not carried out in the frame- 
work  of the decelerating-curved approach  task,  it 
was felt  that  'these  improved  control laws  could 
result  in  a  reduction  of  one-half  point  from  the 
least  favorable  pilot  ratings  shown  in  figure 55 for 
the final approach case. 
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